| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tfrlem.1 |  |-  A = { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) } | 
						
							| 2 |  | tfrlem.3 |  |-  C = ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) | 
						
							| 3 |  | fvex |  |-  ( F ` recs ( F ) ) e. _V | 
						
							| 4 |  | funsng |  |-  ( ( dom recs ( F ) e. On /\ ( F ` recs ( F ) ) e. _V ) -> Fun { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) | 
						
							| 5 | 3 4 | mpan2 |  |-  ( dom recs ( F ) e. On -> Fun { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) | 
						
							| 6 | 1 | tfrlem7 |  |-  Fun recs ( F ) | 
						
							| 7 | 5 6 | jctil |  |-  ( dom recs ( F ) e. On -> ( Fun recs ( F ) /\ Fun { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) ) | 
						
							| 8 | 3 | dmsnop |  |-  dom { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } = { dom recs ( F ) } | 
						
							| 9 | 8 | ineq2i |  |-  ( dom recs ( F ) i^i dom { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) = ( dom recs ( F ) i^i { dom recs ( F ) } ) | 
						
							| 10 | 1 | tfrlem8 |  |-  Ord dom recs ( F ) | 
						
							| 11 |  | orddisj |  |-  ( Ord dom recs ( F ) -> ( dom recs ( F ) i^i { dom recs ( F ) } ) = (/) ) | 
						
							| 12 | 10 11 | ax-mp |  |-  ( dom recs ( F ) i^i { dom recs ( F ) } ) = (/) | 
						
							| 13 | 9 12 | eqtri |  |-  ( dom recs ( F ) i^i dom { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) = (/) | 
						
							| 14 |  | funun |  |-  ( ( ( Fun recs ( F ) /\ Fun { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) /\ ( dom recs ( F ) i^i dom { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) = (/) ) -> Fun ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) ) | 
						
							| 15 | 7 13 14 | sylancl |  |-  ( dom recs ( F ) e. On -> Fun ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) ) | 
						
							| 16 | 8 | uneq2i |  |-  ( dom recs ( F ) u. dom { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) = ( dom recs ( F ) u. { dom recs ( F ) } ) | 
						
							| 17 |  | dmun |  |-  dom ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) = ( dom recs ( F ) u. dom { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) | 
						
							| 18 |  | df-suc |  |-  suc dom recs ( F ) = ( dom recs ( F ) u. { dom recs ( F ) } ) | 
						
							| 19 | 16 17 18 | 3eqtr4i |  |-  dom ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) = suc dom recs ( F ) | 
						
							| 20 |  | df-fn |  |-  ( ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) Fn suc dom recs ( F ) <-> ( Fun ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) /\ dom ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) = suc dom recs ( F ) ) ) | 
						
							| 21 | 15 19 20 | sylanblrc |  |-  ( dom recs ( F ) e. On -> ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) Fn suc dom recs ( F ) ) | 
						
							| 22 | 2 | fneq1i |  |-  ( C Fn suc dom recs ( F ) <-> ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) Fn suc dom recs ( F ) ) | 
						
							| 23 | 21 22 | sylibr |  |-  ( dom recs ( F ) e. On -> C Fn suc dom recs ( F ) ) |