| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tfrlem.1 | ⊢ 𝐴  =  { 𝑓  ∣  ∃ 𝑥  ∈  On ( 𝑓  Fn  𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( 𝐹 ‘ ( 𝑓  ↾  𝑦 ) ) ) } | 
						
							| 2 |  | tfrlem.3 | ⊢ 𝐶  =  ( recs ( 𝐹 )  ∪  { 〈 dom  recs ( 𝐹 ) ,  ( 𝐹 ‘ recs ( 𝐹 ) ) 〉 } ) | 
						
							| 3 |  | fvex | ⊢ ( 𝐹 ‘ recs ( 𝐹 ) )  ∈  V | 
						
							| 4 |  | funsng | ⊢ ( ( dom  recs ( 𝐹 )  ∈  On  ∧  ( 𝐹 ‘ recs ( 𝐹 ) )  ∈  V )  →  Fun  { 〈 dom  recs ( 𝐹 ) ,  ( 𝐹 ‘ recs ( 𝐹 ) ) 〉 } ) | 
						
							| 5 | 3 4 | mpan2 | ⊢ ( dom  recs ( 𝐹 )  ∈  On  →  Fun  { 〈 dom  recs ( 𝐹 ) ,  ( 𝐹 ‘ recs ( 𝐹 ) ) 〉 } ) | 
						
							| 6 | 1 | tfrlem7 | ⊢ Fun  recs ( 𝐹 ) | 
						
							| 7 | 5 6 | jctil | ⊢ ( dom  recs ( 𝐹 )  ∈  On  →  ( Fun  recs ( 𝐹 )  ∧  Fun  { 〈 dom  recs ( 𝐹 ) ,  ( 𝐹 ‘ recs ( 𝐹 ) ) 〉 } ) ) | 
						
							| 8 | 3 | dmsnop | ⊢ dom  { 〈 dom  recs ( 𝐹 ) ,  ( 𝐹 ‘ recs ( 𝐹 ) ) 〉 }  =  { dom  recs ( 𝐹 ) } | 
						
							| 9 | 8 | ineq2i | ⊢ ( dom  recs ( 𝐹 )  ∩  dom  { 〈 dom  recs ( 𝐹 ) ,  ( 𝐹 ‘ recs ( 𝐹 ) ) 〉 } )  =  ( dom  recs ( 𝐹 )  ∩  { dom  recs ( 𝐹 ) } ) | 
						
							| 10 | 1 | tfrlem8 | ⊢ Ord  dom  recs ( 𝐹 ) | 
						
							| 11 |  | orddisj | ⊢ ( Ord  dom  recs ( 𝐹 )  →  ( dom  recs ( 𝐹 )  ∩  { dom  recs ( 𝐹 ) } )  =  ∅ ) | 
						
							| 12 | 10 11 | ax-mp | ⊢ ( dom  recs ( 𝐹 )  ∩  { dom  recs ( 𝐹 ) } )  =  ∅ | 
						
							| 13 | 9 12 | eqtri | ⊢ ( dom  recs ( 𝐹 )  ∩  dom  { 〈 dom  recs ( 𝐹 ) ,  ( 𝐹 ‘ recs ( 𝐹 ) ) 〉 } )  =  ∅ | 
						
							| 14 |  | funun | ⊢ ( ( ( Fun  recs ( 𝐹 )  ∧  Fun  { 〈 dom  recs ( 𝐹 ) ,  ( 𝐹 ‘ recs ( 𝐹 ) ) 〉 } )  ∧  ( dom  recs ( 𝐹 )  ∩  dom  { 〈 dom  recs ( 𝐹 ) ,  ( 𝐹 ‘ recs ( 𝐹 ) ) 〉 } )  =  ∅ )  →  Fun  ( recs ( 𝐹 )  ∪  { 〈 dom  recs ( 𝐹 ) ,  ( 𝐹 ‘ recs ( 𝐹 ) ) 〉 } ) ) | 
						
							| 15 | 7 13 14 | sylancl | ⊢ ( dom  recs ( 𝐹 )  ∈  On  →  Fun  ( recs ( 𝐹 )  ∪  { 〈 dom  recs ( 𝐹 ) ,  ( 𝐹 ‘ recs ( 𝐹 ) ) 〉 } ) ) | 
						
							| 16 | 8 | uneq2i | ⊢ ( dom  recs ( 𝐹 )  ∪  dom  { 〈 dom  recs ( 𝐹 ) ,  ( 𝐹 ‘ recs ( 𝐹 ) ) 〉 } )  =  ( dom  recs ( 𝐹 )  ∪  { dom  recs ( 𝐹 ) } ) | 
						
							| 17 |  | dmun | ⊢ dom  ( recs ( 𝐹 )  ∪  { 〈 dom  recs ( 𝐹 ) ,  ( 𝐹 ‘ recs ( 𝐹 ) ) 〉 } )  =  ( dom  recs ( 𝐹 )  ∪  dom  { 〈 dom  recs ( 𝐹 ) ,  ( 𝐹 ‘ recs ( 𝐹 ) ) 〉 } ) | 
						
							| 18 |  | df-suc | ⊢ suc  dom  recs ( 𝐹 )  =  ( dom  recs ( 𝐹 )  ∪  { dom  recs ( 𝐹 ) } ) | 
						
							| 19 | 16 17 18 | 3eqtr4i | ⊢ dom  ( recs ( 𝐹 )  ∪  { 〈 dom  recs ( 𝐹 ) ,  ( 𝐹 ‘ recs ( 𝐹 ) ) 〉 } )  =  suc  dom  recs ( 𝐹 ) | 
						
							| 20 |  | df-fn | ⊢ ( ( recs ( 𝐹 )  ∪  { 〈 dom  recs ( 𝐹 ) ,  ( 𝐹 ‘ recs ( 𝐹 ) ) 〉 } )  Fn  suc  dom  recs ( 𝐹 )  ↔  ( Fun  ( recs ( 𝐹 )  ∪  { 〈 dom  recs ( 𝐹 ) ,  ( 𝐹 ‘ recs ( 𝐹 ) ) 〉 } )  ∧  dom  ( recs ( 𝐹 )  ∪  { 〈 dom  recs ( 𝐹 ) ,  ( 𝐹 ‘ recs ( 𝐹 ) ) 〉 } )  =  suc  dom  recs ( 𝐹 ) ) ) | 
						
							| 21 | 15 19 20 | sylanblrc | ⊢ ( dom  recs ( 𝐹 )  ∈  On  →  ( recs ( 𝐹 )  ∪  { 〈 dom  recs ( 𝐹 ) ,  ( 𝐹 ‘ recs ( 𝐹 ) ) 〉 } )  Fn  suc  dom  recs ( 𝐹 ) ) | 
						
							| 22 | 2 | fneq1i | ⊢ ( 𝐶  Fn  suc  dom  recs ( 𝐹 )  ↔  ( recs ( 𝐹 )  ∪  { 〈 dom  recs ( 𝐹 ) ,  ( 𝐹 ‘ recs ( 𝐹 ) ) 〉 } )  Fn  suc  dom  recs ( 𝐹 ) ) | 
						
							| 23 | 21 22 | sylibr | ⊢ ( dom  recs ( 𝐹 )  ∈  On  →  𝐶  Fn  suc  dom  recs ( 𝐹 ) ) |