| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tfrlem.1 |  |-  A = { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) } | 
						
							| 2 |  | tfrlem.3 |  |-  C = ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) | 
						
							| 3 |  | elsuci |  |-  ( B e. suc dom recs ( F ) -> ( B e. dom recs ( F ) \/ B = dom recs ( F ) ) ) | 
						
							| 4 | 1 2 | tfrlem10 |  |-  ( dom recs ( F ) e. On -> C Fn suc dom recs ( F ) ) | 
						
							| 5 |  | fnfun |  |-  ( C Fn suc dom recs ( F ) -> Fun C ) | 
						
							| 6 | 4 5 | syl |  |-  ( dom recs ( F ) e. On -> Fun C ) | 
						
							| 7 |  | ssun1 |  |-  recs ( F ) C_ ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) | 
						
							| 8 | 7 2 | sseqtrri |  |-  recs ( F ) C_ C | 
						
							| 9 | 1 | tfrlem9 |  |-  ( B e. dom recs ( F ) -> ( recs ( F ) ` B ) = ( F ` ( recs ( F ) |` B ) ) ) | 
						
							| 10 |  | funssfv |  |-  ( ( Fun C /\ recs ( F ) C_ C /\ B e. dom recs ( F ) ) -> ( C ` B ) = ( recs ( F ) ` B ) ) | 
						
							| 11 | 10 | 3expa |  |-  ( ( ( Fun C /\ recs ( F ) C_ C ) /\ B e. dom recs ( F ) ) -> ( C ` B ) = ( recs ( F ) ` B ) ) | 
						
							| 12 | 11 | adantrl |  |-  ( ( ( Fun C /\ recs ( F ) C_ C ) /\ ( dom recs ( F ) e. On /\ B e. dom recs ( F ) ) ) -> ( C ` B ) = ( recs ( F ) ` B ) ) | 
						
							| 13 |  | onelss |  |-  ( dom recs ( F ) e. On -> ( B e. dom recs ( F ) -> B C_ dom recs ( F ) ) ) | 
						
							| 14 | 13 | imp |  |-  ( ( dom recs ( F ) e. On /\ B e. dom recs ( F ) ) -> B C_ dom recs ( F ) ) | 
						
							| 15 |  | fun2ssres |  |-  ( ( Fun C /\ recs ( F ) C_ C /\ B C_ dom recs ( F ) ) -> ( C |` B ) = ( recs ( F ) |` B ) ) | 
						
							| 16 | 15 | 3expa |  |-  ( ( ( Fun C /\ recs ( F ) C_ C ) /\ B C_ dom recs ( F ) ) -> ( C |` B ) = ( recs ( F ) |` B ) ) | 
						
							| 17 | 16 | fveq2d |  |-  ( ( ( Fun C /\ recs ( F ) C_ C ) /\ B C_ dom recs ( F ) ) -> ( F ` ( C |` B ) ) = ( F ` ( recs ( F ) |` B ) ) ) | 
						
							| 18 | 14 17 | sylan2 |  |-  ( ( ( Fun C /\ recs ( F ) C_ C ) /\ ( dom recs ( F ) e. On /\ B e. dom recs ( F ) ) ) -> ( F ` ( C |` B ) ) = ( F ` ( recs ( F ) |` B ) ) ) | 
						
							| 19 | 12 18 | eqeq12d |  |-  ( ( ( Fun C /\ recs ( F ) C_ C ) /\ ( dom recs ( F ) e. On /\ B e. dom recs ( F ) ) ) -> ( ( C ` B ) = ( F ` ( C |` B ) ) <-> ( recs ( F ) ` B ) = ( F ` ( recs ( F ) |` B ) ) ) ) | 
						
							| 20 | 9 19 | imbitrrid |  |-  ( ( ( Fun C /\ recs ( F ) C_ C ) /\ ( dom recs ( F ) e. On /\ B e. dom recs ( F ) ) ) -> ( B e. dom recs ( F ) -> ( C ` B ) = ( F ` ( C |` B ) ) ) ) | 
						
							| 21 | 8 20 | mpanl2 |  |-  ( ( Fun C /\ ( dom recs ( F ) e. On /\ B e. dom recs ( F ) ) ) -> ( B e. dom recs ( F ) -> ( C ` B ) = ( F ` ( C |` B ) ) ) ) | 
						
							| 22 | 6 21 | sylan |  |-  ( ( dom recs ( F ) e. On /\ ( dom recs ( F ) e. On /\ B e. dom recs ( F ) ) ) -> ( B e. dom recs ( F ) -> ( C ` B ) = ( F ` ( C |` B ) ) ) ) | 
						
							| 23 | 22 | exp32 |  |-  ( dom recs ( F ) e. On -> ( dom recs ( F ) e. On -> ( B e. dom recs ( F ) -> ( B e. dom recs ( F ) -> ( C ` B ) = ( F ` ( C |` B ) ) ) ) ) ) | 
						
							| 24 | 23 | pm2.43i |  |-  ( dom recs ( F ) e. On -> ( B e. dom recs ( F ) -> ( B e. dom recs ( F ) -> ( C ` B ) = ( F ` ( C |` B ) ) ) ) ) | 
						
							| 25 | 24 | pm2.43d |  |-  ( dom recs ( F ) e. On -> ( B e. dom recs ( F ) -> ( C ` B ) = ( F ` ( C |` B ) ) ) ) | 
						
							| 26 |  | opex |  |-  <. B , ( F ` ( C |` B ) ) >. e. _V | 
						
							| 27 | 26 | snid |  |-  <. B , ( F ` ( C |` B ) ) >. e. { <. B , ( F ` ( C |` B ) ) >. } | 
						
							| 28 |  | opeq1 |  |-  ( B = dom recs ( F ) -> <. B , ( F ` ( C |` B ) ) >. = <. dom recs ( F ) , ( F ` ( C |` B ) ) >. ) | 
						
							| 29 | 28 | adantl |  |-  ( ( dom recs ( F ) e. On /\ B = dom recs ( F ) ) -> <. B , ( F ` ( C |` B ) ) >. = <. dom recs ( F ) , ( F ` ( C |` B ) ) >. ) | 
						
							| 30 |  | eqimss |  |-  ( B = dom recs ( F ) -> B C_ dom recs ( F ) ) | 
						
							| 31 | 8 15 | mp3an2 |  |-  ( ( Fun C /\ B C_ dom recs ( F ) ) -> ( C |` B ) = ( recs ( F ) |` B ) ) | 
						
							| 32 | 6 30 31 | syl2an |  |-  ( ( dom recs ( F ) e. On /\ B = dom recs ( F ) ) -> ( C |` B ) = ( recs ( F ) |` B ) ) | 
						
							| 33 |  | reseq2 |  |-  ( B = dom recs ( F ) -> ( recs ( F ) |` B ) = ( recs ( F ) |` dom recs ( F ) ) ) | 
						
							| 34 | 1 | tfrlem6 |  |-  Rel recs ( F ) | 
						
							| 35 |  | resdm |  |-  ( Rel recs ( F ) -> ( recs ( F ) |` dom recs ( F ) ) = recs ( F ) ) | 
						
							| 36 | 34 35 | ax-mp |  |-  ( recs ( F ) |` dom recs ( F ) ) = recs ( F ) | 
						
							| 37 | 33 36 | eqtrdi |  |-  ( B = dom recs ( F ) -> ( recs ( F ) |` B ) = recs ( F ) ) | 
						
							| 38 | 37 | adantl |  |-  ( ( dom recs ( F ) e. On /\ B = dom recs ( F ) ) -> ( recs ( F ) |` B ) = recs ( F ) ) | 
						
							| 39 | 32 38 | eqtrd |  |-  ( ( dom recs ( F ) e. On /\ B = dom recs ( F ) ) -> ( C |` B ) = recs ( F ) ) | 
						
							| 40 | 39 | fveq2d |  |-  ( ( dom recs ( F ) e. On /\ B = dom recs ( F ) ) -> ( F ` ( C |` B ) ) = ( F ` recs ( F ) ) ) | 
						
							| 41 | 40 | opeq2d |  |-  ( ( dom recs ( F ) e. On /\ B = dom recs ( F ) ) -> <. dom recs ( F ) , ( F ` ( C |` B ) ) >. = <. dom recs ( F ) , ( F ` recs ( F ) ) >. ) | 
						
							| 42 | 29 41 | eqtrd |  |-  ( ( dom recs ( F ) e. On /\ B = dom recs ( F ) ) -> <. B , ( F ` ( C |` B ) ) >. = <. dom recs ( F ) , ( F ` recs ( F ) ) >. ) | 
						
							| 43 | 42 | sneqd |  |-  ( ( dom recs ( F ) e. On /\ B = dom recs ( F ) ) -> { <. B , ( F ` ( C |` B ) ) >. } = { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) | 
						
							| 44 | 27 43 | eleqtrid |  |-  ( ( dom recs ( F ) e. On /\ B = dom recs ( F ) ) -> <. B , ( F ` ( C |` B ) ) >. e. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) | 
						
							| 45 |  | elun2 |  |-  ( <. B , ( F ` ( C |` B ) ) >. e. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } -> <. B , ( F ` ( C |` B ) ) >. e. ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) ) | 
						
							| 46 | 44 45 | syl |  |-  ( ( dom recs ( F ) e. On /\ B = dom recs ( F ) ) -> <. B , ( F ` ( C |` B ) ) >. e. ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) ) | 
						
							| 47 | 46 2 | eleqtrrdi |  |-  ( ( dom recs ( F ) e. On /\ B = dom recs ( F ) ) -> <. B , ( F ` ( C |` B ) ) >. e. C ) | 
						
							| 48 |  | simpr |  |-  ( ( dom recs ( F ) e. On /\ B = dom recs ( F ) ) -> B = dom recs ( F ) ) | 
						
							| 49 |  | sucidg |  |-  ( dom recs ( F ) e. On -> dom recs ( F ) e. suc dom recs ( F ) ) | 
						
							| 50 | 49 | adantr |  |-  ( ( dom recs ( F ) e. On /\ B = dom recs ( F ) ) -> dom recs ( F ) e. suc dom recs ( F ) ) | 
						
							| 51 | 48 50 | eqeltrd |  |-  ( ( dom recs ( F ) e. On /\ B = dom recs ( F ) ) -> B e. suc dom recs ( F ) ) | 
						
							| 52 |  | fnopfvb |  |-  ( ( C Fn suc dom recs ( F ) /\ B e. suc dom recs ( F ) ) -> ( ( C ` B ) = ( F ` ( C |` B ) ) <-> <. B , ( F ` ( C |` B ) ) >. e. C ) ) | 
						
							| 53 | 4 51 52 | syl2an2r |  |-  ( ( dom recs ( F ) e. On /\ B = dom recs ( F ) ) -> ( ( C ` B ) = ( F ` ( C |` B ) ) <-> <. B , ( F ` ( C |` B ) ) >. e. C ) ) | 
						
							| 54 | 47 53 | mpbird |  |-  ( ( dom recs ( F ) e. On /\ B = dom recs ( F ) ) -> ( C ` B ) = ( F ` ( C |` B ) ) ) | 
						
							| 55 | 54 | ex |  |-  ( dom recs ( F ) e. On -> ( B = dom recs ( F ) -> ( C ` B ) = ( F ` ( C |` B ) ) ) ) | 
						
							| 56 | 25 55 | jaod |  |-  ( dom recs ( F ) e. On -> ( ( B e. dom recs ( F ) \/ B = dom recs ( F ) ) -> ( C ` B ) = ( F ` ( C |` B ) ) ) ) | 
						
							| 57 | 3 56 | syl5 |  |-  ( dom recs ( F ) e. On -> ( B e. suc dom recs ( F ) -> ( C ` B ) = ( F ` ( C |` B ) ) ) ) |