Metamath Proof Explorer


Theorem tghilberti1

Description: There is a line through any two distinct points. Hilbert's axiom I.1 for geometry. (Contributed by Thierry Arnoux, 25-May-2019)

Ref Expression
Hypotheses tglineelsb2.p
|- B = ( Base ` G )
tglineelsb2.i
|- I = ( Itv ` G )
tglineelsb2.l
|- L = ( LineG ` G )
tglineelsb2.g
|- ( ph -> G e. TarskiG )
tglineelsb2.1
|- ( ph -> P e. B )
tglineelsb2.2
|- ( ph -> Q e. B )
tglineelsb2.4
|- ( ph -> P =/= Q )
Assertion tghilberti1
|- ( ph -> E. x e. ran L ( P e. x /\ Q e. x ) )

Proof

Step Hyp Ref Expression
1 tglineelsb2.p
 |-  B = ( Base ` G )
2 tglineelsb2.i
 |-  I = ( Itv ` G )
3 tglineelsb2.l
 |-  L = ( LineG ` G )
4 tglineelsb2.g
 |-  ( ph -> G e. TarskiG )
5 tglineelsb2.1
 |-  ( ph -> P e. B )
6 tglineelsb2.2
 |-  ( ph -> Q e. B )
7 tglineelsb2.4
 |-  ( ph -> P =/= Q )
8 1 2 3 4 5 6 7 tgelrnln
 |-  ( ph -> ( P L Q ) e. ran L )
9 1 2 3 4 5 6 7 tglinerflx1
 |-  ( ph -> P e. ( P L Q ) )
10 1 2 3 4 5 6 7 tglinerflx2
 |-  ( ph -> Q e. ( P L Q ) )
11 eleq2
 |-  ( x = ( P L Q ) -> ( P e. x <-> P e. ( P L Q ) ) )
12 eleq2
 |-  ( x = ( P L Q ) -> ( Q e. x <-> Q e. ( P L Q ) ) )
13 11 12 anbi12d
 |-  ( x = ( P L Q ) -> ( ( P e. x /\ Q e. x ) <-> ( P e. ( P L Q ) /\ Q e. ( P L Q ) ) ) )
14 13 rspcev
 |-  ( ( ( P L Q ) e. ran L /\ ( P e. ( P L Q ) /\ Q e. ( P L Q ) ) ) -> E. x e. ran L ( P e. x /\ Q e. x ) )
15 8 9 10 14 syl12anc
 |-  ( ph -> E. x e. ran L ( P e. x /\ Q e. x ) )