Step |
Hyp |
Ref |
Expression |
1 |
|
topbnd.1 |
|- X = U. J |
2 |
1
|
clsdif |
|- ( ( J e. Top /\ A C_ X ) -> ( ( cls ` J ) ` ( X \ A ) ) = ( X \ ( ( int ` J ) ` A ) ) ) |
3 |
2
|
ineq2d |
|- ( ( J e. Top /\ A C_ X ) -> ( ( ( cls ` J ) ` A ) i^i ( ( cls ` J ) ` ( X \ A ) ) ) = ( ( ( cls ` J ) ` A ) i^i ( X \ ( ( int ` J ) ` A ) ) ) ) |
4 |
|
indif2 |
|- ( ( ( cls ` J ) ` A ) i^i ( X \ ( ( int ` J ) ` A ) ) ) = ( ( ( ( cls ` J ) ` A ) i^i X ) \ ( ( int ` J ) ` A ) ) |
5 |
3 4
|
eqtrdi |
|- ( ( J e. Top /\ A C_ X ) -> ( ( ( cls ` J ) ` A ) i^i ( ( cls ` J ) ` ( X \ A ) ) ) = ( ( ( ( cls ` J ) ` A ) i^i X ) \ ( ( int ` J ) ` A ) ) ) |
6 |
1
|
clsss3 |
|- ( ( J e. Top /\ A C_ X ) -> ( ( cls ` J ) ` A ) C_ X ) |
7 |
|
df-ss |
|- ( ( ( cls ` J ) ` A ) C_ X <-> ( ( ( cls ` J ) ` A ) i^i X ) = ( ( cls ` J ) ` A ) ) |
8 |
6 7
|
sylib |
|- ( ( J e. Top /\ A C_ X ) -> ( ( ( cls ` J ) ` A ) i^i X ) = ( ( cls ` J ) ` A ) ) |
9 |
8
|
difeq1d |
|- ( ( J e. Top /\ A C_ X ) -> ( ( ( ( cls ` J ) ` A ) i^i X ) \ ( ( int ` J ) ` A ) ) = ( ( ( cls ` J ) ` A ) \ ( ( int ` J ) ` A ) ) ) |
10 |
5 9
|
eqtrd |
|- ( ( J e. Top /\ A C_ X ) -> ( ( ( cls ` J ) ` A ) i^i ( ( cls ` J ) ` ( X \ A ) ) ) = ( ( ( cls ` J ) ` A ) \ ( ( int ` J ) ` A ) ) ) |