| Step | Hyp | Ref | Expression | 
						
							| 1 |  | topbnd.1 |  |-  X = U. J | 
						
							| 2 | 1 | clsdif |  |-  ( ( J e. Top /\ A C_ X ) -> ( ( cls ` J ) ` ( X \ A ) ) = ( X \ ( ( int ` J ) ` A ) ) ) | 
						
							| 3 | 2 | ineq2d |  |-  ( ( J e. Top /\ A C_ X ) -> ( ( ( cls ` J ) ` A ) i^i ( ( cls ` J ) ` ( X \ A ) ) ) = ( ( ( cls ` J ) ` A ) i^i ( X \ ( ( int ` J ) ` A ) ) ) ) | 
						
							| 4 |  | indif2 |  |-  ( ( ( cls ` J ) ` A ) i^i ( X \ ( ( int ` J ) ` A ) ) ) = ( ( ( ( cls ` J ) ` A ) i^i X ) \ ( ( int ` J ) ` A ) ) | 
						
							| 5 | 3 4 | eqtrdi |  |-  ( ( J e. Top /\ A C_ X ) -> ( ( ( cls ` J ) ` A ) i^i ( ( cls ` J ) ` ( X \ A ) ) ) = ( ( ( ( cls ` J ) ` A ) i^i X ) \ ( ( int ` J ) ` A ) ) ) | 
						
							| 6 | 1 | clsss3 |  |-  ( ( J e. Top /\ A C_ X ) -> ( ( cls ` J ) ` A ) C_ X ) | 
						
							| 7 |  | dfss2 |  |-  ( ( ( cls ` J ) ` A ) C_ X <-> ( ( ( cls ` J ) ` A ) i^i X ) = ( ( cls ` J ) ` A ) ) | 
						
							| 8 | 6 7 | sylib |  |-  ( ( J e. Top /\ A C_ X ) -> ( ( ( cls ` J ) ` A ) i^i X ) = ( ( cls ` J ) ` A ) ) | 
						
							| 9 | 8 | difeq1d |  |-  ( ( J e. Top /\ A C_ X ) -> ( ( ( ( cls ` J ) ` A ) i^i X ) \ ( ( int ` J ) ` A ) ) = ( ( ( cls ` J ) ` A ) \ ( ( int ` J ) ` A ) ) ) | 
						
							| 10 | 5 9 | eqtrd |  |-  ( ( J e. Top /\ A C_ X ) -> ( ( ( cls ` J ) ` A ) i^i ( ( cls ` J ) ` ( X \ A ) ) ) = ( ( ( cls ` J ) ` A ) \ ( ( int ` J ) ` A ) ) ) |