Metamath Proof Explorer


Theorem topbnd

Description: Two equivalent expressions for the boundary of a topology. (Contributed by Jeff Hankins, 23-Sep-2009)

Ref Expression
Hypothesis topbnd.1
|- X = U. J
Assertion topbnd
|- ( ( J e. Top /\ A C_ X ) -> ( ( ( cls ` J ) ` A ) i^i ( ( cls ` J ) ` ( X \ A ) ) ) = ( ( ( cls ` J ) ` A ) \ ( ( int ` J ) ` A ) ) )

Proof

Step Hyp Ref Expression
1 topbnd.1
 |-  X = U. J
2 1 clsdif
 |-  ( ( J e. Top /\ A C_ X ) -> ( ( cls ` J ) ` ( X \ A ) ) = ( X \ ( ( int ` J ) ` A ) ) )
3 2 ineq2d
 |-  ( ( J e. Top /\ A C_ X ) -> ( ( ( cls ` J ) ` A ) i^i ( ( cls ` J ) ` ( X \ A ) ) ) = ( ( ( cls ` J ) ` A ) i^i ( X \ ( ( int ` J ) ` A ) ) ) )
4 indif2
 |-  ( ( ( cls ` J ) ` A ) i^i ( X \ ( ( int ` J ) ` A ) ) ) = ( ( ( ( cls ` J ) ` A ) i^i X ) \ ( ( int ` J ) ` A ) )
5 3 4 eqtrdi
 |-  ( ( J e. Top /\ A C_ X ) -> ( ( ( cls ` J ) ` A ) i^i ( ( cls ` J ) ` ( X \ A ) ) ) = ( ( ( ( cls ` J ) ` A ) i^i X ) \ ( ( int ` J ) ` A ) ) )
6 1 clsss3
 |-  ( ( J e. Top /\ A C_ X ) -> ( ( cls ` J ) ` A ) C_ X )
7 df-ss
 |-  ( ( ( cls ` J ) ` A ) C_ X <-> ( ( ( cls ` J ) ` A ) i^i X ) = ( ( cls ` J ) ` A ) )
8 6 7 sylib
 |-  ( ( J e. Top /\ A C_ X ) -> ( ( ( cls ` J ) ` A ) i^i X ) = ( ( cls ` J ) ` A ) )
9 8 difeq1d
 |-  ( ( J e. Top /\ A C_ X ) -> ( ( ( ( cls ` J ) ` A ) i^i X ) \ ( ( int ` J ) ` A ) ) = ( ( ( cls ` J ) ` A ) \ ( ( int ` J ) ` A ) ) )
10 5 9 eqtrd
 |-  ( ( J e. Top /\ A C_ X ) -> ( ( ( cls ` J ) ` A ) i^i ( ( cls ` J ) ` ( X \ A ) ) ) = ( ( ( cls ` J ) ` A ) \ ( ( int ` J ) ` A ) ) )