| Step |
Hyp |
Ref |
Expression |
| 1 |
|
opnbnd.1 |
|- X = U. J |
| 2 |
|
disjdif |
|- ( ( ( int ` J ) ` A ) i^i ( ( ( cls ` J ) ` A ) \ ( ( int ` J ) ` A ) ) ) = (/) |
| 3 |
2
|
a1i |
|- ( ( J e. Top /\ A C_ X ) -> ( ( ( int ` J ) ` A ) i^i ( ( ( cls ` J ) ` A ) \ ( ( int ` J ) ` A ) ) ) = (/) ) |
| 4 |
|
ineq1 |
|- ( ( ( int ` J ) ` A ) = A -> ( ( ( int ` J ) ` A ) i^i ( ( ( cls ` J ) ` A ) \ ( ( int ` J ) ` A ) ) ) = ( A i^i ( ( ( cls ` J ) ` A ) \ ( ( int ` J ) ` A ) ) ) ) |
| 5 |
4
|
eqeq1d |
|- ( ( ( int ` J ) ` A ) = A -> ( ( ( ( int ` J ) ` A ) i^i ( ( ( cls ` J ) ` A ) \ ( ( int ` J ) ` A ) ) ) = (/) <-> ( A i^i ( ( ( cls ` J ) ` A ) \ ( ( int ` J ) ` A ) ) ) = (/) ) ) |
| 6 |
3 5
|
syl5ibcom |
|- ( ( J e. Top /\ A C_ X ) -> ( ( ( int ` J ) ` A ) = A -> ( A i^i ( ( ( cls ` J ) ` A ) \ ( ( int ` J ) ` A ) ) ) = (/) ) ) |
| 7 |
1
|
ntrss2 |
|- ( ( J e. Top /\ A C_ X ) -> ( ( int ` J ) ` A ) C_ A ) |
| 8 |
7
|
adantr |
|- ( ( ( J e. Top /\ A C_ X ) /\ ( A i^i ( ( ( cls ` J ) ` A ) \ ( ( int ` J ) ` A ) ) ) = (/) ) -> ( ( int ` J ) ` A ) C_ A ) |
| 9 |
|
inssdif0 |
|- ( ( A i^i ( ( cls ` J ) ` A ) ) C_ ( ( int ` J ) ` A ) <-> ( A i^i ( ( ( cls ` J ) ` A ) \ ( ( int ` J ) ` A ) ) ) = (/) ) |
| 10 |
1
|
sscls |
|- ( ( J e. Top /\ A C_ X ) -> A C_ ( ( cls ` J ) ` A ) ) |
| 11 |
|
dfss2 |
|- ( A C_ ( ( cls ` J ) ` A ) <-> ( A i^i ( ( cls ` J ) ` A ) ) = A ) |
| 12 |
10 11
|
sylib |
|- ( ( J e. Top /\ A C_ X ) -> ( A i^i ( ( cls ` J ) ` A ) ) = A ) |
| 13 |
12
|
eqcomd |
|- ( ( J e. Top /\ A C_ X ) -> A = ( A i^i ( ( cls ` J ) ` A ) ) ) |
| 14 |
|
eqimss |
|- ( A = ( A i^i ( ( cls ` J ) ` A ) ) -> A C_ ( A i^i ( ( cls ` J ) ` A ) ) ) |
| 15 |
13 14
|
syl |
|- ( ( J e. Top /\ A C_ X ) -> A C_ ( A i^i ( ( cls ` J ) ` A ) ) ) |
| 16 |
|
sstr |
|- ( ( A C_ ( A i^i ( ( cls ` J ) ` A ) ) /\ ( A i^i ( ( cls ` J ) ` A ) ) C_ ( ( int ` J ) ` A ) ) -> A C_ ( ( int ` J ) ` A ) ) |
| 17 |
15 16
|
sylan |
|- ( ( ( J e. Top /\ A C_ X ) /\ ( A i^i ( ( cls ` J ) ` A ) ) C_ ( ( int ` J ) ` A ) ) -> A C_ ( ( int ` J ) ` A ) ) |
| 18 |
9 17
|
sylan2br |
|- ( ( ( J e. Top /\ A C_ X ) /\ ( A i^i ( ( ( cls ` J ) ` A ) \ ( ( int ` J ) ` A ) ) ) = (/) ) -> A C_ ( ( int ` J ) ` A ) ) |
| 19 |
8 18
|
eqssd |
|- ( ( ( J e. Top /\ A C_ X ) /\ ( A i^i ( ( ( cls ` J ) ` A ) \ ( ( int ` J ) ` A ) ) ) = (/) ) -> ( ( int ` J ) ` A ) = A ) |
| 20 |
19
|
ex |
|- ( ( J e. Top /\ A C_ X ) -> ( ( A i^i ( ( ( cls ` J ) ` A ) \ ( ( int ` J ) ` A ) ) ) = (/) -> ( ( int ` J ) ` A ) = A ) ) |
| 21 |
6 20
|
impbid |
|- ( ( J e. Top /\ A C_ X ) -> ( ( ( int ` J ) ` A ) = A <-> ( A i^i ( ( ( cls ` J ) ` A ) \ ( ( int ` J ) ` A ) ) ) = (/) ) ) |
| 22 |
1
|
isopn3 |
|- ( ( J e. Top /\ A C_ X ) -> ( A e. J <-> ( ( int ` J ) ` A ) = A ) ) |
| 23 |
1
|
topbnd |
|- ( ( J e. Top /\ A C_ X ) -> ( ( ( cls ` J ) ` A ) i^i ( ( cls ` J ) ` ( X \ A ) ) ) = ( ( ( cls ` J ) ` A ) \ ( ( int ` J ) ` A ) ) ) |
| 24 |
23
|
ineq2d |
|- ( ( J e. Top /\ A C_ X ) -> ( A i^i ( ( ( cls ` J ) ` A ) i^i ( ( cls ` J ) ` ( X \ A ) ) ) ) = ( A i^i ( ( ( cls ` J ) ` A ) \ ( ( int ` J ) ` A ) ) ) ) |
| 25 |
24
|
eqeq1d |
|- ( ( J e. Top /\ A C_ X ) -> ( ( A i^i ( ( ( cls ` J ) ` A ) i^i ( ( cls ` J ) ` ( X \ A ) ) ) ) = (/) <-> ( A i^i ( ( ( cls ` J ) ` A ) \ ( ( int ` J ) ` A ) ) ) = (/) ) ) |
| 26 |
21 22 25
|
3bitr4d |
|- ( ( J e. Top /\ A C_ X ) -> ( A e. J <-> ( A i^i ( ( ( cls ` J ) ` A ) i^i ( ( cls ` J ) ` ( X \ A ) ) ) ) = (/) ) ) |