| Step | Hyp | Ref | Expression | 
						
							| 1 |  | opnbnd.1 |  |-  X = U. J | 
						
							| 2 |  | disjdif |  |-  ( ( ( int ` J ) ` A ) i^i ( ( ( cls ` J ) ` A ) \ ( ( int ` J ) ` A ) ) ) = (/) | 
						
							| 3 | 2 | a1i |  |-  ( ( J e. Top /\ A C_ X ) -> ( ( ( int ` J ) ` A ) i^i ( ( ( cls ` J ) ` A ) \ ( ( int ` J ) ` A ) ) ) = (/) ) | 
						
							| 4 |  | ineq1 |  |-  ( ( ( int ` J ) ` A ) = A -> ( ( ( int ` J ) ` A ) i^i ( ( ( cls ` J ) ` A ) \ ( ( int ` J ) ` A ) ) ) = ( A i^i ( ( ( cls ` J ) ` A ) \ ( ( int ` J ) ` A ) ) ) ) | 
						
							| 5 | 4 | eqeq1d |  |-  ( ( ( int ` J ) ` A ) = A -> ( ( ( ( int ` J ) ` A ) i^i ( ( ( cls ` J ) ` A ) \ ( ( int ` J ) ` A ) ) ) = (/) <-> ( A i^i ( ( ( cls ` J ) ` A ) \ ( ( int ` J ) ` A ) ) ) = (/) ) ) | 
						
							| 6 | 3 5 | syl5ibcom |  |-  ( ( J e. Top /\ A C_ X ) -> ( ( ( int ` J ) ` A ) = A -> ( A i^i ( ( ( cls ` J ) ` A ) \ ( ( int ` J ) ` A ) ) ) = (/) ) ) | 
						
							| 7 | 1 | ntrss2 |  |-  ( ( J e. Top /\ A C_ X ) -> ( ( int ` J ) ` A ) C_ A ) | 
						
							| 8 | 7 | adantr |  |-  ( ( ( J e. Top /\ A C_ X ) /\ ( A i^i ( ( ( cls ` J ) ` A ) \ ( ( int ` J ) ` A ) ) ) = (/) ) -> ( ( int ` J ) ` A ) C_ A ) | 
						
							| 9 |  | inssdif0 |  |-  ( ( A i^i ( ( cls ` J ) ` A ) ) C_ ( ( int ` J ) ` A ) <-> ( A i^i ( ( ( cls ` J ) ` A ) \ ( ( int ` J ) ` A ) ) ) = (/) ) | 
						
							| 10 | 1 | sscls |  |-  ( ( J e. Top /\ A C_ X ) -> A C_ ( ( cls ` J ) ` A ) ) | 
						
							| 11 |  | dfss2 |  |-  ( A C_ ( ( cls ` J ) ` A ) <-> ( A i^i ( ( cls ` J ) ` A ) ) = A ) | 
						
							| 12 | 10 11 | sylib |  |-  ( ( J e. Top /\ A C_ X ) -> ( A i^i ( ( cls ` J ) ` A ) ) = A ) | 
						
							| 13 | 12 | eqcomd |  |-  ( ( J e. Top /\ A C_ X ) -> A = ( A i^i ( ( cls ` J ) ` A ) ) ) | 
						
							| 14 |  | eqimss |  |-  ( A = ( A i^i ( ( cls ` J ) ` A ) ) -> A C_ ( A i^i ( ( cls ` J ) ` A ) ) ) | 
						
							| 15 | 13 14 | syl |  |-  ( ( J e. Top /\ A C_ X ) -> A C_ ( A i^i ( ( cls ` J ) ` A ) ) ) | 
						
							| 16 |  | sstr |  |-  ( ( A C_ ( A i^i ( ( cls ` J ) ` A ) ) /\ ( A i^i ( ( cls ` J ) ` A ) ) C_ ( ( int ` J ) ` A ) ) -> A C_ ( ( int ` J ) ` A ) ) | 
						
							| 17 | 15 16 | sylan |  |-  ( ( ( J e. Top /\ A C_ X ) /\ ( A i^i ( ( cls ` J ) ` A ) ) C_ ( ( int ` J ) ` A ) ) -> A C_ ( ( int ` J ) ` A ) ) | 
						
							| 18 | 9 17 | sylan2br |  |-  ( ( ( J e. Top /\ A C_ X ) /\ ( A i^i ( ( ( cls ` J ) ` A ) \ ( ( int ` J ) ` A ) ) ) = (/) ) -> A C_ ( ( int ` J ) ` A ) ) | 
						
							| 19 | 8 18 | eqssd |  |-  ( ( ( J e. Top /\ A C_ X ) /\ ( A i^i ( ( ( cls ` J ) ` A ) \ ( ( int ` J ) ` A ) ) ) = (/) ) -> ( ( int ` J ) ` A ) = A ) | 
						
							| 20 | 19 | ex |  |-  ( ( J e. Top /\ A C_ X ) -> ( ( A i^i ( ( ( cls ` J ) ` A ) \ ( ( int ` J ) ` A ) ) ) = (/) -> ( ( int ` J ) ` A ) = A ) ) | 
						
							| 21 | 6 20 | impbid |  |-  ( ( J e. Top /\ A C_ X ) -> ( ( ( int ` J ) ` A ) = A <-> ( A i^i ( ( ( cls ` J ) ` A ) \ ( ( int ` J ) ` A ) ) ) = (/) ) ) | 
						
							| 22 | 1 | isopn3 |  |-  ( ( J e. Top /\ A C_ X ) -> ( A e. J <-> ( ( int ` J ) ` A ) = A ) ) | 
						
							| 23 | 1 | topbnd |  |-  ( ( J e. Top /\ A C_ X ) -> ( ( ( cls ` J ) ` A ) i^i ( ( cls ` J ) ` ( X \ A ) ) ) = ( ( ( cls ` J ) ` A ) \ ( ( int ` J ) ` A ) ) ) | 
						
							| 24 | 23 | ineq2d |  |-  ( ( J e. Top /\ A C_ X ) -> ( A i^i ( ( ( cls ` J ) ` A ) i^i ( ( cls ` J ) ` ( X \ A ) ) ) ) = ( A i^i ( ( ( cls ` J ) ` A ) \ ( ( int ` J ) ` A ) ) ) ) | 
						
							| 25 | 24 | eqeq1d |  |-  ( ( J e. Top /\ A C_ X ) -> ( ( A i^i ( ( ( cls ` J ) ` A ) i^i ( ( cls ` J ) ` ( X \ A ) ) ) ) = (/) <-> ( A i^i ( ( ( cls ` J ) ` A ) \ ( ( int ` J ) ` A ) ) ) = (/) ) ) | 
						
							| 26 | 21 22 25 | 3bitr4d |  |-  ( ( J e. Top /\ A C_ X ) -> ( A e. J <-> ( A i^i ( ( ( cls ` J ) ` A ) i^i ( ( cls ` J ) ` ( X \ A ) ) ) ) = (/) ) ) |