| Step | Hyp | Ref | Expression | 
						
							| 1 |  | opnbnd.1 |  |-  X = U. J | 
						
							| 2 | 1 | iscld3 |  |-  ( ( J e. Top /\ A C_ X ) -> ( A e. ( Clsd ` J ) <-> ( ( cls ` J ) ` A ) = A ) ) | 
						
							| 3 |  | eqimss |  |-  ( ( ( cls ` J ) ` A ) = A -> ( ( cls ` J ) ` A ) C_ A ) | 
						
							| 4 | 2 3 | biimtrdi |  |-  ( ( J e. Top /\ A C_ X ) -> ( A e. ( Clsd ` J ) -> ( ( cls ` J ) ` A ) C_ A ) ) | 
						
							| 5 |  | ssinss1 |  |-  ( ( ( cls ` J ) ` A ) C_ A -> ( ( ( cls ` J ) ` A ) i^i ( ( cls ` J ) ` ( X \ A ) ) ) C_ A ) | 
						
							| 6 | 4 5 | syl6 |  |-  ( ( J e. Top /\ A C_ X ) -> ( A e. ( Clsd ` J ) -> ( ( ( cls ` J ) ` A ) i^i ( ( cls ` J ) ` ( X \ A ) ) ) C_ A ) ) | 
						
							| 7 |  | sslin |  |-  ( ( ( ( cls ` J ) ` A ) i^i ( ( cls ` J ) ` ( X \ A ) ) ) C_ A -> ( ( X \ A ) i^i ( ( ( cls ` J ) ` A ) i^i ( ( cls ` J ) ` ( X \ A ) ) ) ) C_ ( ( X \ A ) i^i A ) ) | 
						
							| 8 | 7 | adantl |  |-  ( ( ( J e. Top /\ A C_ X ) /\ ( ( ( cls ` J ) ` A ) i^i ( ( cls ` J ) ` ( X \ A ) ) ) C_ A ) -> ( ( X \ A ) i^i ( ( ( cls ` J ) ` A ) i^i ( ( cls ` J ) ` ( X \ A ) ) ) ) C_ ( ( X \ A ) i^i A ) ) | 
						
							| 9 |  | disjdifr |  |-  ( ( X \ A ) i^i A ) = (/) | 
						
							| 10 |  | sseq0 |  |-  ( ( ( ( X \ A ) i^i ( ( ( cls ` J ) ` A ) i^i ( ( cls ` J ) ` ( X \ A ) ) ) ) C_ ( ( X \ A ) i^i A ) /\ ( ( X \ A ) i^i A ) = (/) ) -> ( ( X \ A ) i^i ( ( ( cls ` J ) ` A ) i^i ( ( cls ` J ) ` ( X \ A ) ) ) ) = (/) ) | 
						
							| 11 | 8 9 10 | sylancl |  |-  ( ( ( J e. Top /\ A C_ X ) /\ ( ( ( cls ` J ) ` A ) i^i ( ( cls ` J ) ` ( X \ A ) ) ) C_ A ) -> ( ( X \ A ) i^i ( ( ( cls ` J ) ` A ) i^i ( ( cls ` J ) ` ( X \ A ) ) ) ) = (/) ) | 
						
							| 12 | 11 | ex |  |-  ( ( J e. Top /\ A C_ X ) -> ( ( ( ( cls ` J ) ` A ) i^i ( ( cls ` J ) ` ( X \ A ) ) ) C_ A -> ( ( X \ A ) i^i ( ( ( cls ` J ) ` A ) i^i ( ( cls ` J ) ` ( X \ A ) ) ) ) = (/) ) ) | 
						
							| 13 |  | incom |  |-  ( ( ( cls ` J ) ` A ) i^i ( ( cls ` J ) ` ( X \ A ) ) ) = ( ( ( cls ` J ) ` ( X \ A ) ) i^i ( ( cls ` J ) ` A ) ) | 
						
							| 14 |  | dfss4 |  |-  ( A C_ X <-> ( X \ ( X \ A ) ) = A ) | 
						
							| 15 |  | fveq2 |  |-  ( ( X \ ( X \ A ) ) = A -> ( ( cls ` J ) ` ( X \ ( X \ A ) ) ) = ( ( cls ` J ) ` A ) ) | 
						
							| 16 | 15 | eqcomd |  |-  ( ( X \ ( X \ A ) ) = A -> ( ( cls ` J ) ` A ) = ( ( cls ` J ) ` ( X \ ( X \ A ) ) ) ) | 
						
							| 17 | 14 16 | sylbi |  |-  ( A C_ X -> ( ( cls ` J ) ` A ) = ( ( cls ` J ) ` ( X \ ( X \ A ) ) ) ) | 
						
							| 18 | 17 | adantl |  |-  ( ( J e. Top /\ A C_ X ) -> ( ( cls ` J ) ` A ) = ( ( cls ` J ) ` ( X \ ( X \ A ) ) ) ) | 
						
							| 19 | 18 | ineq2d |  |-  ( ( J e. Top /\ A C_ X ) -> ( ( ( cls ` J ) ` ( X \ A ) ) i^i ( ( cls ` J ) ` A ) ) = ( ( ( cls ` J ) ` ( X \ A ) ) i^i ( ( cls ` J ) ` ( X \ ( X \ A ) ) ) ) ) | 
						
							| 20 | 13 19 | eqtrid |  |-  ( ( J e. Top /\ A C_ X ) -> ( ( ( cls ` J ) ` A ) i^i ( ( cls ` J ) ` ( X \ A ) ) ) = ( ( ( cls ` J ) ` ( X \ A ) ) i^i ( ( cls ` J ) ` ( X \ ( X \ A ) ) ) ) ) | 
						
							| 21 | 20 | ineq2d |  |-  ( ( J e. Top /\ A C_ X ) -> ( ( X \ A ) i^i ( ( ( cls ` J ) ` A ) i^i ( ( cls ` J ) ` ( X \ A ) ) ) ) = ( ( X \ A ) i^i ( ( ( cls ` J ) ` ( X \ A ) ) i^i ( ( cls ` J ) ` ( X \ ( X \ A ) ) ) ) ) ) | 
						
							| 22 | 21 | eqeq1d |  |-  ( ( J e. Top /\ A C_ X ) -> ( ( ( X \ A ) i^i ( ( ( cls ` J ) ` A ) i^i ( ( cls ` J ) ` ( X \ A ) ) ) ) = (/) <-> ( ( X \ A ) i^i ( ( ( cls ` J ) ` ( X \ A ) ) i^i ( ( cls ` J ) ` ( X \ ( X \ A ) ) ) ) ) = (/) ) ) | 
						
							| 23 |  | difss |  |-  ( X \ A ) C_ X | 
						
							| 24 | 1 | opnbnd |  |-  ( ( J e. Top /\ ( X \ A ) C_ X ) -> ( ( X \ A ) e. J <-> ( ( X \ A ) i^i ( ( ( cls ` J ) ` ( X \ A ) ) i^i ( ( cls ` J ) ` ( X \ ( X \ A ) ) ) ) ) = (/) ) ) | 
						
							| 25 | 23 24 | mpan2 |  |-  ( J e. Top -> ( ( X \ A ) e. J <-> ( ( X \ A ) i^i ( ( ( cls ` J ) ` ( X \ A ) ) i^i ( ( cls ` J ) ` ( X \ ( X \ A ) ) ) ) ) = (/) ) ) | 
						
							| 26 | 25 | adantr |  |-  ( ( J e. Top /\ A C_ X ) -> ( ( X \ A ) e. J <-> ( ( X \ A ) i^i ( ( ( cls ` J ) ` ( X \ A ) ) i^i ( ( cls ` J ) ` ( X \ ( X \ A ) ) ) ) ) = (/) ) ) | 
						
							| 27 | 22 26 | bitr4d |  |-  ( ( J e. Top /\ A C_ X ) -> ( ( ( X \ A ) i^i ( ( ( cls ` J ) ` A ) i^i ( ( cls ` J ) ` ( X \ A ) ) ) ) = (/) <-> ( X \ A ) e. J ) ) | 
						
							| 28 | 1 | opncld |  |-  ( ( J e. Top /\ ( X \ A ) e. J ) -> ( X \ ( X \ A ) ) e. ( Clsd ` J ) ) | 
						
							| 29 | 28 | ex |  |-  ( J e. Top -> ( ( X \ A ) e. J -> ( X \ ( X \ A ) ) e. ( Clsd ` J ) ) ) | 
						
							| 30 | 29 | adantr |  |-  ( ( J e. Top /\ A C_ X ) -> ( ( X \ A ) e. J -> ( X \ ( X \ A ) ) e. ( Clsd ` J ) ) ) | 
						
							| 31 |  | eleq1 |  |-  ( ( X \ ( X \ A ) ) = A -> ( ( X \ ( X \ A ) ) e. ( Clsd ` J ) <-> A e. ( Clsd ` J ) ) ) | 
						
							| 32 | 14 31 | sylbi |  |-  ( A C_ X -> ( ( X \ ( X \ A ) ) e. ( Clsd ` J ) <-> A e. ( Clsd ` J ) ) ) | 
						
							| 33 | 32 | adantl |  |-  ( ( J e. Top /\ A C_ X ) -> ( ( X \ ( X \ A ) ) e. ( Clsd ` J ) <-> A e. ( Clsd ` J ) ) ) | 
						
							| 34 | 30 33 | sylibd |  |-  ( ( J e. Top /\ A C_ X ) -> ( ( X \ A ) e. J -> A e. ( Clsd ` J ) ) ) | 
						
							| 35 | 27 34 | sylbid |  |-  ( ( J e. Top /\ A C_ X ) -> ( ( ( X \ A ) i^i ( ( ( cls ` J ) ` A ) i^i ( ( cls ` J ) ` ( X \ A ) ) ) ) = (/) -> A e. ( Clsd ` J ) ) ) | 
						
							| 36 | 12 35 | syld |  |-  ( ( J e. Top /\ A C_ X ) -> ( ( ( ( cls ` J ) ` A ) i^i ( ( cls ` J ) ` ( X \ A ) ) ) C_ A -> A e. ( Clsd ` J ) ) ) | 
						
							| 37 | 6 36 | impbid |  |-  ( ( J e. Top /\ A C_ X ) -> ( A e. ( Clsd ` J ) <-> ( ( ( cls ` J ) ` A ) i^i ( ( cls ` J ) ` ( X \ A ) ) ) C_ A ) ) |