| Step |
Hyp |
Ref |
Expression |
| 1 |
|
opnbnd.1 |
|- X = U. J |
| 2 |
1
|
iscld3 |
|- ( ( J e. Top /\ A C_ X ) -> ( A e. ( Clsd ` J ) <-> ( ( cls ` J ) ` A ) = A ) ) |
| 3 |
|
eqimss |
|- ( ( ( cls ` J ) ` A ) = A -> ( ( cls ` J ) ` A ) C_ A ) |
| 4 |
2 3
|
biimtrdi |
|- ( ( J e. Top /\ A C_ X ) -> ( A e. ( Clsd ` J ) -> ( ( cls ` J ) ` A ) C_ A ) ) |
| 5 |
|
ssinss1 |
|- ( ( ( cls ` J ) ` A ) C_ A -> ( ( ( cls ` J ) ` A ) i^i ( ( cls ` J ) ` ( X \ A ) ) ) C_ A ) |
| 6 |
4 5
|
syl6 |
|- ( ( J e. Top /\ A C_ X ) -> ( A e. ( Clsd ` J ) -> ( ( ( cls ` J ) ` A ) i^i ( ( cls ` J ) ` ( X \ A ) ) ) C_ A ) ) |
| 7 |
|
sslin |
|- ( ( ( ( cls ` J ) ` A ) i^i ( ( cls ` J ) ` ( X \ A ) ) ) C_ A -> ( ( X \ A ) i^i ( ( ( cls ` J ) ` A ) i^i ( ( cls ` J ) ` ( X \ A ) ) ) ) C_ ( ( X \ A ) i^i A ) ) |
| 8 |
7
|
adantl |
|- ( ( ( J e. Top /\ A C_ X ) /\ ( ( ( cls ` J ) ` A ) i^i ( ( cls ` J ) ` ( X \ A ) ) ) C_ A ) -> ( ( X \ A ) i^i ( ( ( cls ` J ) ` A ) i^i ( ( cls ` J ) ` ( X \ A ) ) ) ) C_ ( ( X \ A ) i^i A ) ) |
| 9 |
|
disjdifr |
|- ( ( X \ A ) i^i A ) = (/) |
| 10 |
|
sseq0 |
|- ( ( ( ( X \ A ) i^i ( ( ( cls ` J ) ` A ) i^i ( ( cls ` J ) ` ( X \ A ) ) ) ) C_ ( ( X \ A ) i^i A ) /\ ( ( X \ A ) i^i A ) = (/) ) -> ( ( X \ A ) i^i ( ( ( cls ` J ) ` A ) i^i ( ( cls ` J ) ` ( X \ A ) ) ) ) = (/) ) |
| 11 |
8 9 10
|
sylancl |
|- ( ( ( J e. Top /\ A C_ X ) /\ ( ( ( cls ` J ) ` A ) i^i ( ( cls ` J ) ` ( X \ A ) ) ) C_ A ) -> ( ( X \ A ) i^i ( ( ( cls ` J ) ` A ) i^i ( ( cls ` J ) ` ( X \ A ) ) ) ) = (/) ) |
| 12 |
11
|
ex |
|- ( ( J e. Top /\ A C_ X ) -> ( ( ( ( cls ` J ) ` A ) i^i ( ( cls ` J ) ` ( X \ A ) ) ) C_ A -> ( ( X \ A ) i^i ( ( ( cls ` J ) ` A ) i^i ( ( cls ` J ) ` ( X \ A ) ) ) ) = (/) ) ) |
| 13 |
|
incom |
|- ( ( ( cls ` J ) ` A ) i^i ( ( cls ` J ) ` ( X \ A ) ) ) = ( ( ( cls ` J ) ` ( X \ A ) ) i^i ( ( cls ` J ) ` A ) ) |
| 14 |
|
dfss4 |
|- ( A C_ X <-> ( X \ ( X \ A ) ) = A ) |
| 15 |
|
fveq2 |
|- ( ( X \ ( X \ A ) ) = A -> ( ( cls ` J ) ` ( X \ ( X \ A ) ) ) = ( ( cls ` J ) ` A ) ) |
| 16 |
15
|
eqcomd |
|- ( ( X \ ( X \ A ) ) = A -> ( ( cls ` J ) ` A ) = ( ( cls ` J ) ` ( X \ ( X \ A ) ) ) ) |
| 17 |
14 16
|
sylbi |
|- ( A C_ X -> ( ( cls ` J ) ` A ) = ( ( cls ` J ) ` ( X \ ( X \ A ) ) ) ) |
| 18 |
17
|
adantl |
|- ( ( J e. Top /\ A C_ X ) -> ( ( cls ` J ) ` A ) = ( ( cls ` J ) ` ( X \ ( X \ A ) ) ) ) |
| 19 |
18
|
ineq2d |
|- ( ( J e. Top /\ A C_ X ) -> ( ( ( cls ` J ) ` ( X \ A ) ) i^i ( ( cls ` J ) ` A ) ) = ( ( ( cls ` J ) ` ( X \ A ) ) i^i ( ( cls ` J ) ` ( X \ ( X \ A ) ) ) ) ) |
| 20 |
13 19
|
eqtrid |
|- ( ( J e. Top /\ A C_ X ) -> ( ( ( cls ` J ) ` A ) i^i ( ( cls ` J ) ` ( X \ A ) ) ) = ( ( ( cls ` J ) ` ( X \ A ) ) i^i ( ( cls ` J ) ` ( X \ ( X \ A ) ) ) ) ) |
| 21 |
20
|
ineq2d |
|- ( ( J e. Top /\ A C_ X ) -> ( ( X \ A ) i^i ( ( ( cls ` J ) ` A ) i^i ( ( cls ` J ) ` ( X \ A ) ) ) ) = ( ( X \ A ) i^i ( ( ( cls ` J ) ` ( X \ A ) ) i^i ( ( cls ` J ) ` ( X \ ( X \ A ) ) ) ) ) ) |
| 22 |
21
|
eqeq1d |
|- ( ( J e. Top /\ A C_ X ) -> ( ( ( X \ A ) i^i ( ( ( cls ` J ) ` A ) i^i ( ( cls ` J ) ` ( X \ A ) ) ) ) = (/) <-> ( ( X \ A ) i^i ( ( ( cls ` J ) ` ( X \ A ) ) i^i ( ( cls ` J ) ` ( X \ ( X \ A ) ) ) ) ) = (/) ) ) |
| 23 |
|
difss |
|- ( X \ A ) C_ X |
| 24 |
1
|
opnbnd |
|- ( ( J e. Top /\ ( X \ A ) C_ X ) -> ( ( X \ A ) e. J <-> ( ( X \ A ) i^i ( ( ( cls ` J ) ` ( X \ A ) ) i^i ( ( cls ` J ) ` ( X \ ( X \ A ) ) ) ) ) = (/) ) ) |
| 25 |
23 24
|
mpan2 |
|- ( J e. Top -> ( ( X \ A ) e. J <-> ( ( X \ A ) i^i ( ( ( cls ` J ) ` ( X \ A ) ) i^i ( ( cls ` J ) ` ( X \ ( X \ A ) ) ) ) ) = (/) ) ) |
| 26 |
25
|
adantr |
|- ( ( J e. Top /\ A C_ X ) -> ( ( X \ A ) e. J <-> ( ( X \ A ) i^i ( ( ( cls ` J ) ` ( X \ A ) ) i^i ( ( cls ` J ) ` ( X \ ( X \ A ) ) ) ) ) = (/) ) ) |
| 27 |
22 26
|
bitr4d |
|- ( ( J e. Top /\ A C_ X ) -> ( ( ( X \ A ) i^i ( ( ( cls ` J ) ` A ) i^i ( ( cls ` J ) ` ( X \ A ) ) ) ) = (/) <-> ( X \ A ) e. J ) ) |
| 28 |
1
|
opncld |
|- ( ( J e. Top /\ ( X \ A ) e. J ) -> ( X \ ( X \ A ) ) e. ( Clsd ` J ) ) |
| 29 |
28
|
ex |
|- ( J e. Top -> ( ( X \ A ) e. J -> ( X \ ( X \ A ) ) e. ( Clsd ` J ) ) ) |
| 30 |
29
|
adantr |
|- ( ( J e. Top /\ A C_ X ) -> ( ( X \ A ) e. J -> ( X \ ( X \ A ) ) e. ( Clsd ` J ) ) ) |
| 31 |
|
eleq1 |
|- ( ( X \ ( X \ A ) ) = A -> ( ( X \ ( X \ A ) ) e. ( Clsd ` J ) <-> A e. ( Clsd ` J ) ) ) |
| 32 |
14 31
|
sylbi |
|- ( A C_ X -> ( ( X \ ( X \ A ) ) e. ( Clsd ` J ) <-> A e. ( Clsd ` J ) ) ) |
| 33 |
32
|
adantl |
|- ( ( J e. Top /\ A C_ X ) -> ( ( X \ ( X \ A ) ) e. ( Clsd ` J ) <-> A e. ( Clsd ` J ) ) ) |
| 34 |
30 33
|
sylibd |
|- ( ( J e. Top /\ A C_ X ) -> ( ( X \ A ) e. J -> A e. ( Clsd ` J ) ) ) |
| 35 |
27 34
|
sylbid |
|- ( ( J e. Top /\ A C_ X ) -> ( ( ( X \ A ) i^i ( ( ( cls ` J ) ` A ) i^i ( ( cls ` J ) ` ( X \ A ) ) ) ) = (/) -> A e. ( Clsd ` J ) ) ) |
| 36 |
12 35
|
syld |
|- ( ( J e. Top /\ A C_ X ) -> ( ( ( ( cls ` J ) ` A ) i^i ( ( cls ` J ) ` ( X \ A ) ) ) C_ A -> A e. ( Clsd ` J ) ) ) |
| 37 |
6 36
|
impbid |
|- ( ( J e. Top /\ A C_ X ) -> ( A e. ( Clsd ` J ) <-> ( ( ( cls ` J ) ` A ) i^i ( ( cls ` J ) ` ( X \ A ) ) ) C_ A ) ) |