Metamath Proof Explorer


Theorem cldbnd

Description: A set is closed iff it contains its boundary. (Contributed by Jeff Hankins, 1-Oct-2009)

Ref Expression
Hypothesis opnbnd.1 X=J
Assertion cldbnd JTopAXAClsdJclsJAclsJXAA

Proof

Step Hyp Ref Expression
1 opnbnd.1 X=J
2 1 iscld3 JTopAXAClsdJclsJA=A
3 eqimss clsJA=AclsJAA
4 2 3 syl6bi JTopAXAClsdJclsJAA
5 ssinss1 clsJAAclsJAclsJXAA
6 4 5 syl6 JTopAXAClsdJclsJAclsJXAA
7 sslin clsJAclsJXAAXAclsJAclsJXAXAA
8 7 adantl JTopAXclsJAclsJXAAXAclsJAclsJXAXAA
9 disjdifr XAA=
10 sseq0 XAclsJAclsJXAXAAXAA=XAclsJAclsJXA=
11 8 9 10 sylancl JTopAXclsJAclsJXAAXAclsJAclsJXA=
12 11 ex JTopAXclsJAclsJXAAXAclsJAclsJXA=
13 incom clsJAclsJXA=clsJXAclsJA
14 dfss4 AXXXA=A
15 fveq2 XXA=AclsJXXA=clsJA
16 15 eqcomd XXA=AclsJA=clsJXXA
17 14 16 sylbi AXclsJA=clsJXXA
18 17 adantl JTopAXclsJA=clsJXXA
19 18 ineq2d JTopAXclsJXAclsJA=clsJXAclsJXXA
20 13 19 eqtrid JTopAXclsJAclsJXA=clsJXAclsJXXA
21 20 ineq2d JTopAXXAclsJAclsJXA=XAclsJXAclsJXXA
22 21 eqeq1d JTopAXXAclsJAclsJXA=XAclsJXAclsJXXA=
23 difss XAX
24 1 opnbnd JTopXAXXAJXAclsJXAclsJXXA=
25 23 24 mpan2 JTopXAJXAclsJXAclsJXXA=
26 25 adantr JTopAXXAJXAclsJXAclsJXXA=
27 22 26 bitr4d JTopAXXAclsJAclsJXA=XAJ
28 1 opncld JTopXAJXXAClsdJ
29 28 ex JTopXAJXXAClsdJ
30 29 adantr JTopAXXAJXXAClsdJ
31 eleq1 XXA=AXXAClsdJAClsdJ
32 14 31 sylbi AXXXAClsdJAClsdJ
33 32 adantl JTopAXXXAClsdJAClsdJ
34 30 33 sylibd JTopAXXAJAClsdJ
35 27 34 sylbid JTopAXXAclsJAclsJXA=AClsdJ
36 12 35 syld JTopAXclsJAclsJXAAAClsdJ
37 6 36 impbid JTopAXAClsdJclsJAclsJXAA