Description: A set is closed iff it contains its boundary. (Contributed by Jeff Hankins, 1-Oct-2009)
Ref | Expression | ||
---|---|---|---|
Hypothesis | opnbnd.1 | |
|
Assertion | cldbnd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opnbnd.1 | |
|
2 | 1 | iscld3 | |
3 | eqimss | |
|
4 | 2 3 | syl6bi | |
5 | ssinss1 | |
|
6 | 4 5 | syl6 | |
7 | sslin | |
|
8 | 7 | adantl | |
9 | disjdifr | |
|
10 | sseq0 | |
|
11 | 8 9 10 | sylancl | |
12 | 11 | ex | |
13 | incom | |
|
14 | dfss4 | |
|
15 | fveq2 | |
|
16 | 15 | eqcomd | |
17 | 14 16 | sylbi | |
18 | 17 | adantl | |
19 | 18 | ineq2d | |
20 | 13 19 | eqtrid | |
21 | 20 | ineq2d | |
22 | 21 | eqeq1d | |
23 | difss | |
|
24 | 1 | opnbnd | |
25 | 23 24 | mpan2 | |
26 | 25 | adantr | |
27 | 22 26 | bitr4d | |
28 | 1 | opncld | |
29 | 28 | ex | |
30 | 29 | adantr | |
31 | eleq1 | |
|
32 | 14 31 | sylbi | |
33 | 32 | adantl | |
34 | 30 33 | sylibd | |
35 | 27 34 | sylbid | |
36 | 12 35 | syld | |
37 | 6 36 | impbid | |