Metamath Proof Explorer


Theorem cldbnd

Description: A set is closed iff it contains its boundary. (Contributed by Jeff Hankins, 1-Oct-2009)

Ref Expression
Hypothesis opnbnd.1 X = J
Assertion cldbnd J Top A X A Clsd J cls J A cls J X A A

Proof

Step Hyp Ref Expression
1 opnbnd.1 X = J
2 1 iscld3 J Top A X A Clsd J cls J A = A
3 eqimss cls J A = A cls J A A
4 2 3 syl6bi J Top A X A Clsd J cls J A A
5 ssinss1 cls J A A cls J A cls J X A A
6 4 5 syl6 J Top A X A Clsd J cls J A cls J X A A
7 sslin cls J A cls J X A A X A cls J A cls J X A X A A
8 7 adantl J Top A X cls J A cls J X A A X A cls J A cls J X A X A A
9 disjdifr X A A =
10 sseq0 X A cls J A cls J X A X A A X A A = X A cls J A cls J X A =
11 8 9 10 sylancl J Top A X cls J A cls J X A A X A cls J A cls J X A =
12 11 ex J Top A X cls J A cls J X A A X A cls J A cls J X A =
13 incom cls J A cls J X A = cls J X A cls J A
14 dfss4 A X X X A = A
15 fveq2 X X A = A cls J X X A = cls J A
16 15 eqcomd X X A = A cls J A = cls J X X A
17 14 16 sylbi A X cls J A = cls J X X A
18 17 adantl J Top A X cls J A = cls J X X A
19 18 ineq2d J Top A X cls J X A cls J A = cls J X A cls J X X A
20 13 19 syl5eq J Top A X cls J A cls J X A = cls J X A cls J X X A
21 20 ineq2d J Top A X X A cls J A cls J X A = X A cls J X A cls J X X A
22 21 eqeq1d J Top A X X A cls J A cls J X A = X A cls J X A cls J X X A =
23 difss X A X
24 1 opnbnd J Top X A X X A J X A cls J X A cls J X X A =
25 23 24 mpan2 J Top X A J X A cls J X A cls J X X A =
26 25 adantr J Top A X X A J X A cls J X A cls J X X A =
27 22 26 bitr4d J Top A X X A cls J A cls J X A = X A J
28 1 opncld J Top X A J X X A Clsd J
29 28 ex J Top X A J X X A Clsd J
30 29 adantr J Top A X X A J X X A Clsd J
31 eleq1 X X A = A X X A Clsd J A Clsd J
32 14 31 sylbi A X X X A Clsd J A Clsd J
33 32 adantl J Top A X X X A Clsd J A Clsd J
34 30 33 sylibd J Top A X X A J A Clsd J
35 27 34 sylbid J Top A X X A cls J A cls J X A = A Clsd J
36 12 35 syld J Top A X cls J A cls J X A A A Clsd J
37 6 36 impbid J Top A X A Clsd J cls J A cls J X A A