Metamath Proof Explorer


Theorem ntruni

Description: A union of interiors is a subset of the interior of the union. The reverse inclusion may not hold. (Contributed by Jeff Hankins, 31-Aug-2009)

Ref Expression
Hypothesis ntruni.1 X=J
Assertion ntruni JTopO𝒫XoOintJointJO

Proof

Step Hyp Ref Expression
1 ntruni.1 X=J
2 elssuni oOoO
3 sspwuni O𝒫XOX
4 1 ntrss JTopOXoOintJointJO
5 4 3expia JTopOXoOintJointJO
6 3 5 sylan2b JTopO𝒫XoOintJointJO
7 2 6 syl5 JTopO𝒫XoOintJointJO
8 7 ralrimiv JTopO𝒫XoOintJointJO
9 iunss oOintJointJOoOintJointJO
10 8 9 sylibr JTopO𝒫XoOintJointJO