Metamath Proof Explorer


Theorem ntruni

Description: A union of interiors is a subset of the interior of the union. The reverse inclusion may not hold. (Contributed by Jeff Hankins, 31-Aug-2009)

Ref Expression
Hypothesis ntruni.1 X = J
Assertion ntruni J Top O 𝒫 X o O int J o int J O

Proof

Step Hyp Ref Expression
1 ntruni.1 X = J
2 elssuni o O o O
3 sspwuni O 𝒫 X O X
4 1 ntrss J Top O X o O int J o int J O
5 4 3expia J Top O X o O int J o int J O
6 3 5 sylan2b J Top O 𝒫 X o O int J o int J O
7 2 6 syl5 J Top O 𝒫 X o O int J o int J O
8 7 ralrimiv J Top O 𝒫 X o O int J o int J O
9 iunss o O int J o int J O o O int J o int J O
10 8 9 sylibr J Top O 𝒫 X o O int J o int J O