Metamath Proof Explorer


Theorem clsun

Description: A pairwise union of closures is the closure of the union. (Contributed by Jeff Hankins, 31-Aug-2009)

Ref Expression
Hypothesis clsun.1 X=J
Assertion clsun JTopAXBXclsJAB=clsJAclsJB

Proof

Step Hyp Ref Expression
1 clsun.1 X=J
2 difundi XAB=XAXB
3 2 fveq2i intJXAB=intJXAXB
4 difss XAX
5 difss XBX
6 1 ntrin JTopXAXXBXintJXAXB=intJXAintJXB
7 4 5 6 mp3an23 JTopintJXAXB=intJXAintJXB
8 7 3ad2ant1 JTopAXBXintJXAXB=intJXAintJXB
9 3 8 eqtrid JTopAXBXintJXAB=intJXAintJXB
10 simp1 JTopAXBXJTop
11 unss AXBXABX
12 11 biimpi AXBXABX
13 12 3adant1 JTopAXBXABX
14 1 ntrdif JTopABXintJXAB=XclsJAB
15 10 13 14 syl2anc JTopAXBXintJXAB=XclsJAB
16 1 ntrdif JTopAXintJXA=XclsJA
17 16 3adant3 JTopAXBXintJXA=XclsJA
18 1 ntrdif JTopBXintJXB=XclsJB
19 18 3adant2 JTopAXBXintJXB=XclsJB
20 17 19 ineq12d JTopAXBXintJXAintJXB=XclsJAXclsJB
21 difundi XclsJAclsJB=XclsJAXclsJB
22 20 21 eqtr4di JTopAXBXintJXAintJXB=XclsJAclsJB
23 9 15 22 3eqtr3d JTopAXBXXclsJAB=XclsJAclsJB
24 23 difeq2d JTopAXBXXXclsJAB=XXclsJAclsJB
25 1 clscld JTopABXclsJABClsdJ
26 10 13 25 syl2anc JTopAXBXclsJABClsdJ
27 1 cldss clsJABClsdJclsJABX
28 26 27 syl JTopAXBXclsJABX
29 dfss4 clsJABXXXclsJAB=clsJAB
30 28 29 sylib JTopAXBXXXclsJAB=clsJAB
31 1 clsss3 JTopAXclsJAX
32 31 3adant3 JTopAXBXclsJAX
33 1 clsss3 JTopBXclsJBX
34 33 3adant2 JTopAXBXclsJBX
35 32 34 jca JTopAXBXclsJAXclsJBX
36 unss clsJAXclsJBXclsJAclsJBX
37 dfss4 clsJAclsJBXXXclsJAclsJB=clsJAclsJB
38 36 37 bitri clsJAXclsJBXXXclsJAclsJB=clsJAclsJB
39 35 38 sylib JTopAXBXXXclsJAclsJB=clsJAclsJB
40 24 30 39 3eqtr3d JTopAXBXclsJAB=clsJAclsJB