Metamath Proof Explorer


Theorem clsint2

Description: The closure of an intersection is a subset of the intersection of the closures. (Contributed by Jeff Hankins, 31-Aug-2009)

Ref Expression
Hypothesis clsint2.1 X = J
Assertion clsint2 J Top C 𝒫 X cls J C c C cls J c

Proof

Step Hyp Ref Expression
1 clsint2.1 X = J
2 sspwuni C 𝒫 X C X
3 elssuni c C c C
4 sstr2 c C C X c X
5 3 4 syl c C C X c X
6 5 adantl J Top c C C X c X
7 intss1 c C C c
8 1 clsss J Top c X C c cls J C cls J c
9 7 8 syl3an3 J Top c X c C cls J C cls J c
10 9 3com23 J Top c C c X cls J C cls J c
11 10 3expia J Top c C c X cls J C cls J c
12 6 11 syld J Top c C C X cls J C cls J c
13 12 impancom J Top C X c C cls J C cls J c
14 2 13 sylan2b J Top C 𝒫 X c C cls J C cls J c
15 14 ralrimiv J Top C 𝒫 X c C cls J C cls J c
16 ssiin cls J C c C cls J c c C cls J C cls J c
17 15 16 sylibr J Top C 𝒫 X cls J C c C cls J c