| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clsint2.1 | ⊢ 𝑋  =  ∪  𝐽 | 
						
							| 2 |  | sspwuni | ⊢ ( 𝐶  ⊆  𝒫  𝑋  ↔  ∪  𝐶  ⊆  𝑋 ) | 
						
							| 3 |  | elssuni | ⊢ ( 𝑐  ∈  𝐶  →  𝑐  ⊆  ∪  𝐶 ) | 
						
							| 4 |  | sstr2 | ⊢ ( 𝑐  ⊆  ∪  𝐶  →  ( ∪  𝐶  ⊆  𝑋  →  𝑐  ⊆  𝑋 ) ) | 
						
							| 5 | 3 4 | syl | ⊢ ( 𝑐  ∈  𝐶  →  ( ∪  𝐶  ⊆  𝑋  →  𝑐  ⊆  𝑋 ) ) | 
						
							| 6 | 5 | adantl | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑐  ∈  𝐶 )  →  ( ∪  𝐶  ⊆  𝑋  →  𝑐  ⊆  𝑋 ) ) | 
						
							| 7 |  | intss1 | ⊢ ( 𝑐  ∈  𝐶  →  ∩  𝐶  ⊆  𝑐 ) | 
						
							| 8 | 1 | clsss | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑐  ⊆  𝑋  ∧  ∩  𝐶  ⊆  𝑐 )  →  ( ( cls ‘ 𝐽 ) ‘ ∩  𝐶 )  ⊆  ( ( cls ‘ 𝐽 ) ‘ 𝑐 ) ) | 
						
							| 9 | 7 8 | syl3an3 | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑐  ⊆  𝑋  ∧  𝑐  ∈  𝐶 )  →  ( ( cls ‘ 𝐽 ) ‘ ∩  𝐶 )  ⊆  ( ( cls ‘ 𝐽 ) ‘ 𝑐 ) ) | 
						
							| 10 | 9 | 3com23 | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑐  ∈  𝐶  ∧  𝑐  ⊆  𝑋 )  →  ( ( cls ‘ 𝐽 ) ‘ ∩  𝐶 )  ⊆  ( ( cls ‘ 𝐽 ) ‘ 𝑐 ) ) | 
						
							| 11 | 10 | 3expia | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑐  ∈  𝐶 )  →  ( 𝑐  ⊆  𝑋  →  ( ( cls ‘ 𝐽 ) ‘ ∩  𝐶 )  ⊆  ( ( cls ‘ 𝐽 ) ‘ 𝑐 ) ) ) | 
						
							| 12 | 6 11 | syld | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑐  ∈  𝐶 )  →  ( ∪  𝐶  ⊆  𝑋  →  ( ( cls ‘ 𝐽 ) ‘ ∩  𝐶 )  ⊆  ( ( cls ‘ 𝐽 ) ‘ 𝑐 ) ) ) | 
						
							| 13 | 12 | impancom | ⊢ ( ( 𝐽  ∈  Top  ∧  ∪  𝐶  ⊆  𝑋 )  →  ( 𝑐  ∈  𝐶  →  ( ( cls ‘ 𝐽 ) ‘ ∩  𝐶 )  ⊆  ( ( cls ‘ 𝐽 ) ‘ 𝑐 ) ) ) | 
						
							| 14 | 2 13 | sylan2b | ⊢ ( ( 𝐽  ∈  Top  ∧  𝐶  ⊆  𝒫  𝑋 )  →  ( 𝑐  ∈  𝐶  →  ( ( cls ‘ 𝐽 ) ‘ ∩  𝐶 )  ⊆  ( ( cls ‘ 𝐽 ) ‘ 𝑐 ) ) ) | 
						
							| 15 | 14 | ralrimiv | ⊢ ( ( 𝐽  ∈  Top  ∧  𝐶  ⊆  𝒫  𝑋 )  →  ∀ 𝑐  ∈  𝐶 ( ( cls ‘ 𝐽 ) ‘ ∩  𝐶 )  ⊆  ( ( cls ‘ 𝐽 ) ‘ 𝑐 ) ) | 
						
							| 16 |  | ssiin | ⊢ ( ( ( cls ‘ 𝐽 ) ‘ ∩  𝐶 )  ⊆  ∩  𝑐  ∈  𝐶 ( ( cls ‘ 𝐽 ) ‘ 𝑐 )  ↔  ∀ 𝑐  ∈  𝐶 ( ( cls ‘ 𝐽 ) ‘ ∩  𝐶 )  ⊆  ( ( cls ‘ 𝐽 ) ‘ 𝑐 ) ) | 
						
							| 17 | 15 16 | sylibr | ⊢ ( ( 𝐽  ∈  Top  ∧  𝐶  ⊆  𝒫  𝑋 )  →  ( ( cls ‘ 𝐽 ) ‘ ∩  𝐶 )  ⊆  ∩  𝑐  ∈  𝐶 ( ( cls ‘ 𝐽 ) ‘ 𝑐 ) ) |