Metamath Proof Explorer


Theorem clsint2

Description: The closure of an intersection is a subset of the intersection of the closures. (Contributed by Jeff Hankins, 31-Aug-2009)

Ref Expression
Hypothesis clsint2.1 𝑋 = 𝐽
Assertion clsint2 ( ( 𝐽 ∈ Top ∧ 𝐶 ⊆ 𝒫 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝐶 ) ⊆ 𝑐𝐶 ( ( cls ‘ 𝐽 ) ‘ 𝑐 ) )

Proof

Step Hyp Ref Expression
1 clsint2.1 𝑋 = 𝐽
2 sspwuni ( 𝐶 ⊆ 𝒫 𝑋 𝐶𝑋 )
3 elssuni ( 𝑐𝐶𝑐 𝐶 )
4 sstr2 ( 𝑐 𝐶 → ( 𝐶𝑋𝑐𝑋 ) )
5 3 4 syl ( 𝑐𝐶 → ( 𝐶𝑋𝑐𝑋 ) )
6 5 adantl ( ( 𝐽 ∈ Top ∧ 𝑐𝐶 ) → ( 𝐶𝑋𝑐𝑋 ) )
7 intss1 ( 𝑐𝐶 𝐶𝑐 )
8 1 clsss ( ( 𝐽 ∈ Top ∧ 𝑐𝑋 𝐶𝑐 ) → ( ( cls ‘ 𝐽 ) ‘ 𝐶 ) ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑐 ) )
9 7 8 syl3an3 ( ( 𝐽 ∈ Top ∧ 𝑐𝑋𝑐𝐶 ) → ( ( cls ‘ 𝐽 ) ‘ 𝐶 ) ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑐 ) )
10 9 3com23 ( ( 𝐽 ∈ Top ∧ 𝑐𝐶𝑐𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝐶 ) ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑐 ) )
11 10 3expia ( ( 𝐽 ∈ Top ∧ 𝑐𝐶 ) → ( 𝑐𝑋 → ( ( cls ‘ 𝐽 ) ‘ 𝐶 ) ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑐 ) ) )
12 6 11 syld ( ( 𝐽 ∈ Top ∧ 𝑐𝐶 ) → ( 𝐶𝑋 → ( ( cls ‘ 𝐽 ) ‘ 𝐶 ) ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑐 ) ) )
13 12 impancom ( ( 𝐽 ∈ Top ∧ 𝐶𝑋 ) → ( 𝑐𝐶 → ( ( cls ‘ 𝐽 ) ‘ 𝐶 ) ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑐 ) ) )
14 2 13 sylan2b ( ( 𝐽 ∈ Top ∧ 𝐶 ⊆ 𝒫 𝑋 ) → ( 𝑐𝐶 → ( ( cls ‘ 𝐽 ) ‘ 𝐶 ) ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑐 ) ) )
15 14 ralrimiv ( ( 𝐽 ∈ Top ∧ 𝐶 ⊆ 𝒫 𝑋 ) → ∀ 𝑐𝐶 ( ( cls ‘ 𝐽 ) ‘ 𝐶 ) ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑐 ) )
16 ssiin ( ( ( cls ‘ 𝐽 ) ‘ 𝐶 ) ⊆ 𝑐𝐶 ( ( cls ‘ 𝐽 ) ‘ 𝑐 ) ↔ ∀ 𝑐𝐶 ( ( cls ‘ 𝐽 ) ‘ 𝐶 ) ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑐 ) )
17 15 16 sylibr ( ( 𝐽 ∈ Top ∧ 𝐶 ⊆ 𝒫 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝐶 ) ⊆ 𝑐𝐶 ( ( cls ‘ 𝐽 ) ‘ 𝑐 ) )