Step |
Hyp |
Ref |
Expression |
1 |
|
clsint2.1 |
⊢ 𝑋 = ∪ 𝐽 |
2 |
|
sspwuni |
⊢ ( 𝐶 ⊆ 𝒫 𝑋 ↔ ∪ 𝐶 ⊆ 𝑋 ) |
3 |
|
elssuni |
⊢ ( 𝑐 ∈ 𝐶 → 𝑐 ⊆ ∪ 𝐶 ) |
4 |
|
sstr2 |
⊢ ( 𝑐 ⊆ ∪ 𝐶 → ( ∪ 𝐶 ⊆ 𝑋 → 𝑐 ⊆ 𝑋 ) ) |
5 |
3 4
|
syl |
⊢ ( 𝑐 ∈ 𝐶 → ( ∪ 𝐶 ⊆ 𝑋 → 𝑐 ⊆ 𝑋 ) ) |
6 |
5
|
adantl |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑐 ∈ 𝐶 ) → ( ∪ 𝐶 ⊆ 𝑋 → 𝑐 ⊆ 𝑋 ) ) |
7 |
|
intss1 |
⊢ ( 𝑐 ∈ 𝐶 → ∩ 𝐶 ⊆ 𝑐 ) |
8 |
1
|
clsss |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑐 ⊆ 𝑋 ∧ ∩ 𝐶 ⊆ 𝑐 ) → ( ( cls ‘ 𝐽 ) ‘ ∩ 𝐶 ) ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑐 ) ) |
9 |
7 8
|
syl3an3 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑐 ⊆ 𝑋 ∧ 𝑐 ∈ 𝐶 ) → ( ( cls ‘ 𝐽 ) ‘ ∩ 𝐶 ) ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑐 ) ) |
10 |
9
|
3com23 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑐 ∈ 𝐶 ∧ 𝑐 ⊆ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ ∩ 𝐶 ) ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑐 ) ) |
11 |
10
|
3expia |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑐 ∈ 𝐶 ) → ( 𝑐 ⊆ 𝑋 → ( ( cls ‘ 𝐽 ) ‘ ∩ 𝐶 ) ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑐 ) ) ) |
12 |
6 11
|
syld |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑐 ∈ 𝐶 ) → ( ∪ 𝐶 ⊆ 𝑋 → ( ( cls ‘ 𝐽 ) ‘ ∩ 𝐶 ) ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑐 ) ) ) |
13 |
12
|
impancom |
⊢ ( ( 𝐽 ∈ Top ∧ ∪ 𝐶 ⊆ 𝑋 ) → ( 𝑐 ∈ 𝐶 → ( ( cls ‘ 𝐽 ) ‘ ∩ 𝐶 ) ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑐 ) ) ) |
14 |
2 13
|
sylan2b |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐶 ⊆ 𝒫 𝑋 ) → ( 𝑐 ∈ 𝐶 → ( ( cls ‘ 𝐽 ) ‘ ∩ 𝐶 ) ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑐 ) ) ) |
15 |
14
|
ralrimiv |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐶 ⊆ 𝒫 𝑋 ) → ∀ 𝑐 ∈ 𝐶 ( ( cls ‘ 𝐽 ) ‘ ∩ 𝐶 ) ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑐 ) ) |
16 |
|
ssiin |
⊢ ( ( ( cls ‘ 𝐽 ) ‘ ∩ 𝐶 ) ⊆ ∩ 𝑐 ∈ 𝐶 ( ( cls ‘ 𝐽 ) ‘ 𝑐 ) ↔ ∀ 𝑐 ∈ 𝐶 ( ( cls ‘ 𝐽 ) ‘ ∩ 𝐶 ) ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑐 ) ) |
17 |
15 16
|
sylibr |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐶 ⊆ 𝒫 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ ∩ 𝐶 ) ⊆ ∩ 𝑐 ∈ 𝐶 ( ( cls ‘ 𝐽 ) ‘ 𝑐 ) ) |