Metamath Proof Explorer


Theorem clsint2

Description: The closure of an intersection is a subset of the intersection of the closures. (Contributed by Jeff Hankins, 31-Aug-2009)

Ref Expression
Hypothesis clsint2.1
|- X = U. J
Assertion clsint2
|- ( ( J e. Top /\ C C_ ~P X ) -> ( ( cls ` J ) ` |^| C ) C_ |^|_ c e. C ( ( cls ` J ) ` c ) )

Proof

Step Hyp Ref Expression
1 clsint2.1
 |-  X = U. J
2 sspwuni
 |-  ( C C_ ~P X <-> U. C C_ X )
3 elssuni
 |-  ( c e. C -> c C_ U. C )
4 sstr2
 |-  ( c C_ U. C -> ( U. C C_ X -> c C_ X ) )
5 3 4 syl
 |-  ( c e. C -> ( U. C C_ X -> c C_ X ) )
6 5 adantl
 |-  ( ( J e. Top /\ c e. C ) -> ( U. C C_ X -> c C_ X ) )
7 intss1
 |-  ( c e. C -> |^| C C_ c )
8 1 clsss
 |-  ( ( J e. Top /\ c C_ X /\ |^| C C_ c ) -> ( ( cls ` J ) ` |^| C ) C_ ( ( cls ` J ) ` c ) )
9 7 8 syl3an3
 |-  ( ( J e. Top /\ c C_ X /\ c e. C ) -> ( ( cls ` J ) ` |^| C ) C_ ( ( cls ` J ) ` c ) )
10 9 3com23
 |-  ( ( J e. Top /\ c e. C /\ c C_ X ) -> ( ( cls ` J ) ` |^| C ) C_ ( ( cls ` J ) ` c ) )
11 10 3expia
 |-  ( ( J e. Top /\ c e. C ) -> ( c C_ X -> ( ( cls ` J ) ` |^| C ) C_ ( ( cls ` J ) ` c ) ) )
12 6 11 syld
 |-  ( ( J e. Top /\ c e. C ) -> ( U. C C_ X -> ( ( cls ` J ) ` |^| C ) C_ ( ( cls ` J ) ` c ) ) )
13 12 impancom
 |-  ( ( J e. Top /\ U. C C_ X ) -> ( c e. C -> ( ( cls ` J ) ` |^| C ) C_ ( ( cls ` J ) ` c ) ) )
14 2 13 sylan2b
 |-  ( ( J e. Top /\ C C_ ~P X ) -> ( c e. C -> ( ( cls ` J ) ` |^| C ) C_ ( ( cls ` J ) ` c ) ) )
15 14 ralrimiv
 |-  ( ( J e. Top /\ C C_ ~P X ) -> A. c e. C ( ( cls ` J ) ` |^| C ) C_ ( ( cls ` J ) ` c ) )
16 ssiin
 |-  ( ( ( cls ` J ) ` |^| C ) C_ |^|_ c e. C ( ( cls ` J ) ` c ) <-> A. c e. C ( ( cls ` J ) ` |^| C ) C_ ( ( cls ` J ) ` c ) )
17 15 16 sylibr
 |-  ( ( J e. Top /\ C C_ ~P X ) -> ( ( cls ` J ) ` |^| C ) C_ |^|_ c e. C ( ( cls ` J ) ` c ) )