| Step |
Hyp |
Ref |
Expression |
| 1 |
|
opnregcld.1 |
|- X = U. J |
| 2 |
1
|
ntropn |
|- ( ( J e. Top /\ A C_ X ) -> ( ( int ` J ) ` A ) e. J ) |
| 3 |
|
eqcom |
|- ( ( ( cls ` J ) ` ( ( int ` J ) ` A ) ) = A <-> A = ( ( cls ` J ) ` ( ( int ` J ) ` A ) ) ) |
| 4 |
3
|
biimpi |
|- ( ( ( cls ` J ) ` ( ( int ` J ) ` A ) ) = A -> A = ( ( cls ` J ) ` ( ( int ` J ) ` A ) ) ) |
| 5 |
|
fveq2 |
|- ( o = ( ( int ` J ) ` A ) -> ( ( cls ` J ) ` o ) = ( ( cls ` J ) ` ( ( int ` J ) ` A ) ) ) |
| 6 |
5
|
rspceeqv |
|- ( ( ( ( int ` J ) ` A ) e. J /\ A = ( ( cls ` J ) ` ( ( int ` J ) ` A ) ) ) -> E. o e. J A = ( ( cls ` J ) ` o ) ) |
| 7 |
2 4 6
|
syl2an |
|- ( ( ( J e. Top /\ A C_ X ) /\ ( ( cls ` J ) ` ( ( int ` J ) ` A ) ) = A ) -> E. o e. J A = ( ( cls ` J ) ` o ) ) |
| 8 |
7
|
ex |
|- ( ( J e. Top /\ A C_ X ) -> ( ( ( cls ` J ) ` ( ( int ` J ) ` A ) ) = A -> E. o e. J A = ( ( cls ` J ) ` o ) ) ) |
| 9 |
|
simpl |
|- ( ( J e. Top /\ o e. J ) -> J e. Top ) |
| 10 |
1
|
eltopss |
|- ( ( J e. Top /\ o e. J ) -> o C_ X ) |
| 11 |
1
|
clsss3 |
|- ( ( J e. Top /\ o C_ X ) -> ( ( cls ` J ) ` o ) C_ X ) |
| 12 |
10 11
|
syldan |
|- ( ( J e. Top /\ o e. J ) -> ( ( cls ` J ) ` o ) C_ X ) |
| 13 |
1
|
ntrss2 |
|- ( ( J e. Top /\ ( ( cls ` J ) ` o ) C_ X ) -> ( ( int ` J ) ` ( ( cls ` J ) ` o ) ) C_ ( ( cls ` J ) ` o ) ) |
| 14 |
12 13
|
syldan |
|- ( ( J e. Top /\ o e. J ) -> ( ( int ` J ) ` ( ( cls ` J ) ` o ) ) C_ ( ( cls ` J ) ` o ) ) |
| 15 |
1
|
clsss |
|- ( ( J e. Top /\ ( ( cls ` J ) ` o ) C_ X /\ ( ( int ` J ) ` ( ( cls ` J ) ` o ) ) C_ ( ( cls ` J ) ` o ) ) -> ( ( cls ` J ) ` ( ( int ` J ) ` ( ( cls ` J ) ` o ) ) ) C_ ( ( cls ` J ) ` ( ( cls ` J ) ` o ) ) ) |
| 16 |
9 12 14 15
|
syl3anc |
|- ( ( J e. Top /\ o e. J ) -> ( ( cls ` J ) ` ( ( int ` J ) ` ( ( cls ` J ) ` o ) ) ) C_ ( ( cls ` J ) ` ( ( cls ` J ) ` o ) ) ) |
| 17 |
1
|
clsidm |
|- ( ( J e. Top /\ o C_ X ) -> ( ( cls ` J ) ` ( ( cls ` J ) ` o ) ) = ( ( cls ` J ) ` o ) ) |
| 18 |
10 17
|
syldan |
|- ( ( J e. Top /\ o e. J ) -> ( ( cls ` J ) ` ( ( cls ` J ) ` o ) ) = ( ( cls ` J ) ` o ) ) |
| 19 |
16 18
|
sseqtrd |
|- ( ( J e. Top /\ o e. J ) -> ( ( cls ` J ) ` ( ( int ` J ) ` ( ( cls ` J ) ` o ) ) ) C_ ( ( cls ` J ) ` o ) ) |
| 20 |
1
|
ntrss3 |
|- ( ( J e. Top /\ ( ( cls ` J ) ` o ) C_ X ) -> ( ( int ` J ) ` ( ( cls ` J ) ` o ) ) C_ X ) |
| 21 |
12 20
|
syldan |
|- ( ( J e. Top /\ o e. J ) -> ( ( int ` J ) ` ( ( cls ` J ) ` o ) ) C_ X ) |
| 22 |
|
simpr |
|- ( ( J e. Top /\ o e. J ) -> o e. J ) |
| 23 |
1
|
sscls |
|- ( ( J e. Top /\ o C_ X ) -> o C_ ( ( cls ` J ) ` o ) ) |
| 24 |
10 23
|
syldan |
|- ( ( J e. Top /\ o e. J ) -> o C_ ( ( cls ` J ) ` o ) ) |
| 25 |
1
|
ssntr |
|- ( ( ( J e. Top /\ ( ( cls ` J ) ` o ) C_ X ) /\ ( o e. J /\ o C_ ( ( cls ` J ) ` o ) ) ) -> o C_ ( ( int ` J ) ` ( ( cls ` J ) ` o ) ) ) |
| 26 |
9 12 22 24 25
|
syl22anc |
|- ( ( J e. Top /\ o e. J ) -> o C_ ( ( int ` J ) ` ( ( cls ` J ) ` o ) ) ) |
| 27 |
1
|
clsss |
|- ( ( J e. Top /\ ( ( int ` J ) ` ( ( cls ` J ) ` o ) ) C_ X /\ o C_ ( ( int ` J ) ` ( ( cls ` J ) ` o ) ) ) -> ( ( cls ` J ) ` o ) C_ ( ( cls ` J ) ` ( ( int ` J ) ` ( ( cls ` J ) ` o ) ) ) ) |
| 28 |
9 21 26 27
|
syl3anc |
|- ( ( J e. Top /\ o e. J ) -> ( ( cls ` J ) ` o ) C_ ( ( cls ` J ) ` ( ( int ` J ) ` ( ( cls ` J ) ` o ) ) ) ) |
| 29 |
19 28
|
eqssd |
|- ( ( J e. Top /\ o e. J ) -> ( ( cls ` J ) ` ( ( int ` J ) ` ( ( cls ` J ) ` o ) ) ) = ( ( cls ` J ) ` o ) ) |
| 30 |
29
|
adantlr |
|- ( ( ( J e. Top /\ A C_ X ) /\ o e. J ) -> ( ( cls ` J ) ` ( ( int ` J ) ` ( ( cls ` J ) ` o ) ) ) = ( ( cls ` J ) ` o ) ) |
| 31 |
|
2fveq3 |
|- ( A = ( ( cls ` J ) ` o ) -> ( ( cls ` J ) ` ( ( int ` J ) ` A ) ) = ( ( cls ` J ) ` ( ( int ` J ) ` ( ( cls ` J ) ` o ) ) ) ) |
| 32 |
|
id |
|- ( A = ( ( cls ` J ) ` o ) -> A = ( ( cls ` J ) ` o ) ) |
| 33 |
31 32
|
eqeq12d |
|- ( A = ( ( cls ` J ) ` o ) -> ( ( ( cls ` J ) ` ( ( int ` J ) ` A ) ) = A <-> ( ( cls ` J ) ` ( ( int ` J ) ` ( ( cls ` J ) ` o ) ) ) = ( ( cls ` J ) ` o ) ) ) |
| 34 |
30 33
|
syl5ibrcom |
|- ( ( ( J e. Top /\ A C_ X ) /\ o e. J ) -> ( A = ( ( cls ` J ) ` o ) -> ( ( cls ` J ) ` ( ( int ` J ) ` A ) ) = A ) ) |
| 35 |
34
|
rexlimdva |
|- ( ( J e. Top /\ A C_ X ) -> ( E. o e. J A = ( ( cls ` J ) ` o ) -> ( ( cls ` J ) ` ( ( int ` J ) ` A ) ) = A ) ) |
| 36 |
8 35
|
impbid |
|- ( ( J e. Top /\ A C_ X ) -> ( ( ( cls ` J ) ` ( ( int ` J ) ` A ) ) = A <-> E. o e. J A = ( ( cls ` J ) ` o ) ) ) |