| Step | Hyp | Ref | Expression | 
						
							| 1 |  | opnregcld.1 |  |-  X = U. J | 
						
							| 2 | 1 | ntropn |  |-  ( ( J e. Top /\ A C_ X ) -> ( ( int ` J ) ` A ) e. J ) | 
						
							| 3 |  | eqcom |  |-  ( ( ( cls ` J ) ` ( ( int ` J ) ` A ) ) = A <-> A = ( ( cls ` J ) ` ( ( int ` J ) ` A ) ) ) | 
						
							| 4 | 3 | biimpi |  |-  ( ( ( cls ` J ) ` ( ( int ` J ) ` A ) ) = A -> A = ( ( cls ` J ) ` ( ( int ` J ) ` A ) ) ) | 
						
							| 5 |  | fveq2 |  |-  ( o = ( ( int ` J ) ` A ) -> ( ( cls ` J ) ` o ) = ( ( cls ` J ) ` ( ( int ` J ) ` A ) ) ) | 
						
							| 6 | 5 | rspceeqv |  |-  ( ( ( ( int ` J ) ` A ) e. J /\ A = ( ( cls ` J ) ` ( ( int ` J ) ` A ) ) ) -> E. o e. J A = ( ( cls ` J ) ` o ) ) | 
						
							| 7 | 2 4 6 | syl2an |  |-  ( ( ( J e. Top /\ A C_ X ) /\ ( ( cls ` J ) ` ( ( int ` J ) ` A ) ) = A ) -> E. o e. J A = ( ( cls ` J ) ` o ) ) | 
						
							| 8 | 7 | ex |  |-  ( ( J e. Top /\ A C_ X ) -> ( ( ( cls ` J ) ` ( ( int ` J ) ` A ) ) = A -> E. o e. J A = ( ( cls ` J ) ` o ) ) ) | 
						
							| 9 |  | simpl |  |-  ( ( J e. Top /\ o e. J ) -> J e. Top ) | 
						
							| 10 | 1 | eltopss |  |-  ( ( J e. Top /\ o e. J ) -> o C_ X ) | 
						
							| 11 | 1 | clsss3 |  |-  ( ( J e. Top /\ o C_ X ) -> ( ( cls ` J ) ` o ) C_ X ) | 
						
							| 12 | 10 11 | syldan |  |-  ( ( J e. Top /\ o e. J ) -> ( ( cls ` J ) ` o ) C_ X ) | 
						
							| 13 | 1 | ntrss2 |  |-  ( ( J e. Top /\ ( ( cls ` J ) ` o ) C_ X ) -> ( ( int ` J ) ` ( ( cls ` J ) ` o ) ) C_ ( ( cls ` J ) ` o ) ) | 
						
							| 14 | 12 13 | syldan |  |-  ( ( J e. Top /\ o e. J ) -> ( ( int ` J ) ` ( ( cls ` J ) ` o ) ) C_ ( ( cls ` J ) ` o ) ) | 
						
							| 15 | 1 | clsss |  |-  ( ( J e. Top /\ ( ( cls ` J ) ` o ) C_ X /\ ( ( int ` J ) ` ( ( cls ` J ) ` o ) ) C_ ( ( cls ` J ) ` o ) ) -> ( ( cls ` J ) ` ( ( int ` J ) ` ( ( cls ` J ) ` o ) ) ) C_ ( ( cls ` J ) ` ( ( cls ` J ) ` o ) ) ) | 
						
							| 16 | 9 12 14 15 | syl3anc |  |-  ( ( J e. Top /\ o e. J ) -> ( ( cls ` J ) ` ( ( int ` J ) ` ( ( cls ` J ) ` o ) ) ) C_ ( ( cls ` J ) ` ( ( cls ` J ) ` o ) ) ) | 
						
							| 17 | 1 | clsidm |  |-  ( ( J e. Top /\ o C_ X ) -> ( ( cls ` J ) ` ( ( cls ` J ) ` o ) ) = ( ( cls ` J ) ` o ) ) | 
						
							| 18 | 10 17 | syldan |  |-  ( ( J e. Top /\ o e. J ) -> ( ( cls ` J ) ` ( ( cls ` J ) ` o ) ) = ( ( cls ` J ) ` o ) ) | 
						
							| 19 | 16 18 | sseqtrd |  |-  ( ( J e. Top /\ o e. J ) -> ( ( cls ` J ) ` ( ( int ` J ) ` ( ( cls ` J ) ` o ) ) ) C_ ( ( cls ` J ) ` o ) ) | 
						
							| 20 | 1 | ntrss3 |  |-  ( ( J e. Top /\ ( ( cls ` J ) ` o ) C_ X ) -> ( ( int ` J ) ` ( ( cls ` J ) ` o ) ) C_ X ) | 
						
							| 21 | 12 20 | syldan |  |-  ( ( J e. Top /\ o e. J ) -> ( ( int ` J ) ` ( ( cls ` J ) ` o ) ) C_ X ) | 
						
							| 22 |  | simpr |  |-  ( ( J e. Top /\ o e. J ) -> o e. J ) | 
						
							| 23 | 1 | sscls |  |-  ( ( J e. Top /\ o C_ X ) -> o C_ ( ( cls ` J ) ` o ) ) | 
						
							| 24 | 10 23 | syldan |  |-  ( ( J e. Top /\ o e. J ) -> o C_ ( ( cls ` J ) ` o ) ) | 
						
							| 25 | 1 | ssntr |  |-  ( ( ( J e. Top /\ ( ( cls ` J ) ` o ) C_ X ) /\ ( o e. J /\ o C_ ( ( cls ` J ) ` o ) ) ) -> o C_ ( ( int ` J ) ` ( ( cls ` J ) ` o ) ) ) | 
						
							| 26 | 9 12 22 24 25 | syl22anc |  |-  ( ( J e. Top /\ o e. J ) -> o C_ ( ( int ` J ) ` ( ( cls ` J ) ` o ) ) ) | 
						
							| 27 | 1 | clsss |  |-  ( ( J e. Top /\ ( ( int ` J ) ` ( ( cls ` J ) ` o ) ) C_ X /\ o C_ ( ( int ` J ) ` ( ( cls ` J ) ` o ) ) ) -> ( ( cls ` J ) ` o ) C_ ( ( cls ` J ) ` ( ( int ` J ) ` ( ( cls ` J ) ` o ) ) ) ) | 
						
							| 28 | 9 21 26 27 | syl3anc |  |-  ( ( J e. Top /\ o e. J ) -> ( ( cls ` J ) ` o ) C_ ( ( cls ` J ) ` ( ( int ` J ) ` ( ( cls ` J ) ` o ) ) ) ) | 
						
							| 29 | 19 28 | eqssd |  |-  ( ( J e. Top /\ o e. J ) -> ( ( cls ` J ) ` ( ( int ` J ) ` ( ( cls ` J ) ` o ) ) ) = ( ( cls ` J ) ` o ) ) | 
						
							| 30 | 29 | adantlr |  |-  ( ( ( J e. Top /\ A C_ X ) /\ o e. J ) -> ( ( cls ` J ) ` ( ( int ` J ) ` ( ( cls ` J ) ` o ) ) ) = ( ( cls ` J ) ` o ) ) | 
						
							| 31 |  | 2fveq3 |  |-  ( A = ( ( cls ` J ) ` o ) -> ( ( cls ` J ) ` ( ( int ` J ) ` A ) ) = ( ( cls ` J ) ` ( ( int ` J ) ` ( ( cls ` J ) ` o ) ) ) ) | 
						
							| 32 |  | id |  |-  ( A = ( ( cls ` J ) ` o ) -> A = ( ( cls ` J ) ` o ) ) | 
						
							| 33 | 31 32 | eqeq12d |  |-  ( A = ( ( cls ` J ) ` o ) -> ( ( ( cls ` J ) ` ( ( int ` J ) ` A ) ) = A <-> ( ( cls ` J ) ` ( ( int ` J ) ` ( ( cls ` J ) ` o ) ) ) = ( ( cls ` J ) ` o ) ) ) | 
						
							| 34 | 30 33 | syl5ibrcom |  |-  ( ( ( J e. Top /\ A C_ X ) /\ o e. J ) -> ( A = ( ( cls ` J ) ` o ) -> ( ( cls ` J ) ` ( ( int ` J ) ` A ) ) = A ) ) | 
						
							| 35 | 34 | rexlimdva |  |-  ( ( J e. Top /\ A C_ X ) -> ( E. o e. J A = ( ( cls ` J ) ` o ) -> ( ( cls ` J ) ` ( ( int ` J ) ` A ) ) = A ) ) | 
						
							| 36 | 8 35 | impbid |  |-  ( ( J e. Top /\ A C_ X ) -> ( ( ( cls ` J ) ` ( ( int ` J ) ` A ) ) = A <-> E. o e. J A = ( ( cls ` J ) ` o ) ) ) |