| Step |
Hyp |
Ref |
Expression |
| 1 |
|
opnregcld.1 |
|- X = U. J |
| 2 |
1
|
clscld |
|- ( ( J e. Top /\ A C_ X ) -> ( ( cls ` J ) ` A ) e. ( Clsd ` J ) ) |
| 3 |
|
eqcom |
|- ( ( ( int ` J ) ` ( ( cls ` J ) ` A ) ) = A <-> A = ( ( int ` J ) ` ( ( cls ` J ) ` A ) ) ) |
| 4 |
3
|
biimpi |
|- ( ( ( int ` J ) ` ( ( cls ` J ) ` A ) ) = A -> A = ( ( int ` J ) ` ( ( cls ` J ) ` A ) ) ) |
| 5 |
|
fveq2 |
|- ( c = ( ( cls ` J ) ` A ) -> ( ( int ` J ) ` c ) = ( ( int ` J ) ` ( ( cls ` J ) ` A ) ) ) |
| 6 |
5
|
rspceeqv |
|- ( ( ( ( cls ` J ) ` A ) e. ( Clsd ` J ) /\ A = ( ( int ` J ) ` ( ( cls ` J ) ` A ) ) ) -> E. c e. ( Clsd ` J ) A = ( ( int ` J ) ` c ) ) |
| 7 |
2 4 6
|
syl2an |
|- ( ( ( J e. Top /\ A C_ X ) /\ ( ( int ` J ) ` ( ( cls ` J ) ` A ) ) = A ) -> E. c e. ( Clsd ` J ) A = ( ( int ` J ) ` c ) ) |
| 8 |
7
|
ex |
|- ( ( J e. Top /\ A C_ X ) -> ( ( ( int ` J ) ` ( ( cls ` J ) ` A ) ) = A -> E. c e. ( Clsd ` J ) A = ( ( int ` J ) ` c ) ) ) |
| 9 |
|
cldrcl |
|- ( c e. ( Clsd ` J ) -> J e. Top ) |
| 10 |
1
|
cldss |
|- ( c e. ( Clsd ` J ) -> c C_ X ) |
| 11 |
1
|
ntrss2 |
|- ( ( J e. Top /\ c C_ X ) -> ( ( int ` J ) ` c ) C_ c ) |
| 12 |
9 10 11
|
syl2anc |
|- ( c e. ( Clsd ` J ) -> ( ( int ` J ) ` c ) C_ c ) |
| 13 |
1
|
clsss2 |
|- ( ( c e. ( Clsd ` J ) /\ ( ( int ` J ) ` c ) C_ c ) -> ( ( cls ` J ) ` ( ( int ` J ) ` c ) ) C_ c ) |
| 14 |
12 13
|
mpdan |
|- ( c e. ( Clsd ` J ) -> ( ( cls ` J ) ` ( ( int ` J ) ` c ) ) C_ c ) |
| 15 |
1
|
ntrss |
|- ( ( J e. Top /\ c C_ X /\ ( ( cls ` J ) ` ( ( int ` J ) ` c ) ) C_ c ) -> ( ( int ` J ) ` ( ( cls ` J ) ` ( ( int ` J ) ` c ) ) ) C_ ( ( int ` J ) ` c ) ) |
| 16 |
9 10 14 15
|
syl3anc |
|- ( c e. ( Clsd ` J ) -> ( ( int ` J ) ` ( ( cls ` J ) ` ( ( int ` J ) ` c ) ) ) C_ ( ( int ` J ) ` c ) ) |
| 17 |
1
|
ntridm |
|- ( ( J e. Top /\ c C_ X ) -> ( ( int ` J ) ` ( ( int ` J ) ` c ) ) = ( ( int ` J ) ` c ) ) |
| 18 |
9 10 17
|
syl2anc |
|- ( c e. ( Clsd ` J ) -> ( ( int ` J ) ` ( ( int ` J ) ` c ) ) = ( ( int ` J ) ` c ) ) |
| 19 |
1
|
ntrss3 |
|- ( ( J e. Top /\ c C_ X ) -> ( ( int ` J ) ` c ) C_ X ) |
| 20 |
9 10 19
|
syl2anc |
|- ( c e. ( Clsd ` J ) -> ( ( int ` J ) ` c ) C_ X ) |
| 21 |
1
|
clsss3 |
|- ( ( J e. Top /\ ( ( int ` J ) ` c ) C_ X ) -> ( ( cls ` J ) ` ( ( int ` J ) ` c ) ) C_ X ) |
| 22 |
9 20 21
|
syl2anc |
|- ( c e. ( Clsd ` J ) -> ( ( cls ` J ) ` ( ( int ` J ) ` c ) ) C_ X ) |
| 23 |
1
|
sscls |
|- ( ( J e. Top /\ ( ( int ` J ) ` c ) C_ X ) -> ( ( int ` J ) ` c ) C_ ( ( cls ` J ) ` ( ( int ` J ) ` c ) ) ) |
| 24 |
9 20 23
|
syl2anc |
|- ( c e. ( Clsd ` J ) -> ( ( int ` J ) ` c ) C_ ( ( cls ` J ) ` ( ( int ` J ) ` c ) ) ) |
| 25 |
1
|
ntrss |
|- ( ( J e. Top /\ ( ( cls ` J ) ` ( ( int ` J ) ` c ) ) C_ X /\ ( ( int ` J ) ` c ) C_ ( ( cls ` J ) ` ( ( int ` J ) ` c ) ) ) -> ( ( int ` J ) ` ( ( int ` J ) ` c ) ) C_ ( ( int ` J ) ` ( ( cls ` J ) ` ( ( int ` J ) ` c ) ) ) ) |
| 26 |
9 22 24 25
|
syl3anc |
|- ( c e. ( Clsd ` J ) -> ( ( int ` J ) ` ( ( int ` J ) ` c ) ) C_ ( ( int ` J ) ` ( ( cls ` J ) ` ( ( int ` J ) ` c ) ) ) ) |
| 27 |
18 26
|
eqsstrrd |
|- ( c e. ( Clsd ` J ) -> ( ( int ` J ) ` c ) C_ ( ( int ` J ) ` ( ( cls ` J ) ` ( ( int ` J ) ` c ) ) ) ) |
| 28 |
16 27
|
eqssd |
|- ( c e. ( Clsd ` J ) -> ( ( int ` J ) ` ( ( cls ` J ) ` ( ( int ` J ) ` c ) ) ) = ( ( int ` J ) ` c ) ) |
| 29 |
28
|
adantl |
|- ( ( ( J e. Top /\ A C_ X ) /\ c e. ( Clsd ` J ) ) -> ( ( int ` J ) ` ( ( cls ` J ) ` ( ( int ` J ) ` c ) ) ) = ( ( int ` J ) ` c ) ) |
| 30 |
|
2fveq3 |
|- ( A = ( ( int ` J ) ` c ) -> ( ( int ` J ) ` ( ( cls ` J ) ` A ) ) = ( ( int ` J ) ` ( ( cls ` J ) ` ( ( int ` J ) ` c ) ) ) ) |
| 31 |
|
id |
|- ( A = ( ( int ` J ) ` c ) -> A = ( ( int ` J ) ` c ) ) |
| 32 |
30 31
|
eqeq12d |
|- ( A = ( ( int ` J ) ` c ) -> ( ( ( int ` J ) ` ( ( cls ` J ) ` A ) ) = A <-> ( ( int ` J ) ` ( ( cls ` J ) ` ( ( int ` J ) ` c ) ) ) = ( ( int ` J ) ` c ) ) ) |
| 33 |
29 32
|
syl5ibrcom |
|- ( ( ( J e. Top /\ A C_ X ) /\ c e. ( Clsd ` J ) ) -> ( A = ( ( int ` J ) ` c ) -> ( ( int ` J ) ` ( ( cls ` J ) ` A ) ) = A ) ) |
| 34 |
33
|
rexlimdva |
|- ( ( J e. Top /\ A C_ X ) -> ( E. c e. ( Clsd ` J ) A = ( ( int ` J ) ` c ) -> ( ( int ` J ) ` ( ( cls ` J ) ` A ) ) = A ) ) |
| 35 |
8 34
|
impbid |
|- ( ( J e. Top /\ A C_ X ) -> ( ( ( int ` J ) ` ( ( cls ` J ) ` A ) ) = A <-> E. c e. ( Clsd ` J ) A = ( ( int ` J ) ` c ) ) ) |