| Step | Hyp | Ref | Expression | 
						
							| 1 |  | opnregcld.1 |  | 
						
							| 2 | 1 | clscld |  | 
						
							| 3 |  | eqcom |  | 
						
							| 4 | 3 | biimpi |  | 
						
							| 5 |  | fveq2 |  | 
						
							| 6 | 5 | rspceeqv |  | 
						
							| 7 | 2 4 6 | syl2an |  | 
						
							| 8 | 7 | ex |  | 
						
							| 9 |  | cldrcl |  | 
						
							| 10 | 1 | cldss |  | 
						
							| 11 | 1 | ntrss2 |  | 
						
							| 12 | 9 10 11 | syl2anc |  | 
						
							| 13 | 1 | clsss2 |  | 
						
							| 14 | 12 13 | mpdan |  | 
						
							| 15 | 1 | ntrss |  | 
						
							| 16 | 9 10 14 15 | syl3anc |  | 
						
							| 17 | 1 | ntridm |  | 
						
							| 18 | 9 10 17 | syl2anc |  | 
						
							| 19 | 1 | ntrss3 |  | 
						
							| 20 | 9 10 19 | syl2anc |  | 
						
							| 21 | 1 | clsss3 |  | 
						
							| 22 | 9 20 21 | syl2anc |  | 
						
							| 23 | 1 | sscls |  | 
						
							| 24 | 9 20 23 | syl2anc |  | 
						
							| 25 | 1 | ntrss |  | 
						
							| 26 | 9 22 24 25 | syl3anc |  | 
						
							| 27 | 18 26 | eqsstrrd |  | 
						
							| 28 | 16 27 | eqssd |  | 
						
							| 29 | 28 | adantl |  | 
						
							| 30 |  | 2fveq3 |  | 
						
							| 31 |  | id |  | 
						
							| 32 | 30 31 | eqeq12d |  | 
						
							| 33 | 29 32 | syl5ibrcom |  | 
						
							| 34 | 33 | rexlimdva |  | 
						
							| 35 | 8 34 | impbid |  |