| Step |
Hyp |
Ref |
Expression |
| 1 |
|
opnregcld.1 |
⊢ 𝑋 = ∪ 𝐽 |
| 2 |
1
|
clscld |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 3 |
|
eqcom |
⊢ ( ( ( int ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) = 𝐴 ↔ 𝐴 = ( ( int ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) ) |
| 4 |
3
|
biimpi |
⊢ ( ( ( int ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) = 𝐴 → 𝐴 = ( ( int ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) ) |
| 5 |
|
fveq2 |
⊢ ( 𝑐 = ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) → ( ( int ‘ 𝐽 ) ‘ 𝑐 ) = ( ( int ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) ) |
| 6 |
5
|
rspceeqv |
⊢ ( ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ∈ ( Clsd ‘ 𝐽 ) ∧ 𝐴 = ( ( int ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) ) → ∃ 𝑐 ∈ ( Clsd ‘ 𝐽 ) 𝐴 = ( ( int ‘ 𝐽 ) ‘ 𝑐 ) ) |
| 7 |
2 4 6
|
syl2an |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) ∧ ( ( int ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) = 𝐴 ) → ∃ 𝑐 ∈ ( Clsd ‘ 𝐽 ) 𝐴 = ( ( int ‘ 𝐽 ) ‘ 𝑐 ) ) |
| 8 |
7
|
ex |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) → ( ( ( int ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) = 𝐴 → ∃ 𝑐 ∈ ( Clsd ‘ 𝐽 ) 𝐴 = ( ( int ‘ 𝐽 ) ‘ 𝑐 ) ) ) |
| 9 |
|
cldrcl |
⊢ ( 𝑐 ∈ ( Clsd ‘ 𝐽 ) → 𝐽 ∈ Top ) |
| 10 |
1
|
cldss |
⊢ ( 𝑐 ∈ ( Clsd ‘ 𝐽 ) → 𝑐 ⊆ 𝑋 ) |
| 11 |
1
|
ntrss2 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑐 ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ 𝑐 ) ⊆ 𝑐 ) |
| 12 |
9 10 11
|
syl2anc |
⊢ ( 𝑐 ∈ ( Clsd ‘ 𝐽 ) → ( ( int ‘ 𝐽 ) ‘ 𝑐 ) ⊆ 𝑐 ) |
| 13 |
1
|
clsss2 |
⊢ ( ( 𝑐 ∈ ( Clsd ‘ 𝐽 ) ∧ ( ( int ‘ 𝐽 ) ‘ 𝑐 ) ⊆ 𝑐 ) → ( ( cls ‘ 𝐽 ) ‘ ( ( int ‘ 𝐽 ) ‘ 𝑐 ) ) ⊆ 𝑐 ) |
| 14 |
12 13
|
mpdan |
⊢ ( 𝑐 ∈ ( Clsd ‘ 𝐽 ) → ( ( cls ‘ 𝐽 ) ‘ ( ( int ‘ 𝐽 ) ‘ 𝑐 ) ) ⊆ 𝑐 ) |
| 15 |
1
|
ntrss |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑐 ⊆ 𝑋 ∧ ( ( cls ‘ 𝐽 ) ‘ ( ( int ‘ 𝐽 ) ‘ 𝑐 ) ) ⊆ 𝑐 ) → ( ( int ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ ( ( int ‘ 𝐽 ) ‘ 𝑐 ) ) ) ⊆ ( ( int ‘ 𝐽 ) ‘ 𝑐 ) ) |
| 16 |
9 10 14 15
|
syl3anc |
⊢ ( 𝑐 ∈ ( Clsd ‘ 𝐽 ) → ( ( int ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ ( ( int ‘ 𝐽 ) ‘ 𝑐 ) ) ) ⊆ ( ( int ‘ 𝐽 ) ‘ 𝑐 ) ) |
| 17 |
1
|
ntridm |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑐 ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ ( ( int ‘ 𝐽 ) ‘ 𝑐 ) ) = ( ( int ‘ 𝐽 ) ‘ 𝑐 ) ) |
| 18 |
9 10 17
|
syl2anc |
⊢ ( 𝑐 ∈ ( Clsd ‘ 𝐽 ) → ( ( int ‘ 𝐽 ) ‘ ( ( int ‘ 𝐽 ) ‘ 𝑐 ) ) = ( ( int ‘ 𝐽 ) ‘ 𝑐 ) ) |
| 19 |
1
|
ntrss3 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑐 ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ 𝑐 ) ⊆ 𝑋 ) |
| 20 |
9 10 19
|
syl2anc |
⊢ ( 𝑐 ∈ ( Clsd ‘ 𝐽 ) → ( ( int ‘ 𝐽 ) ‘ 𝑐 ) ⊆ 𝑋 ) |
| 21 |
1
|
clsss3 |
⊢ ( ( 𝐽 ∈ Top ∧ ( ( int ‘ 𝐽 ) ‘ 𝑐 ) ⊆ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ ( ( int ‘ 𝐽 ) ‘ 𝑐 ) ) ⊆ 𝑋 ) |
| 22 |
9 20 21
|
syl2anc |
⊢ ( 𝑐 ∈ ( Clsd ‘ 𝐽 ) → ( ( cls ‘ 𝐽 ) ‘ ( ( int ‘ 𝐽 ) ‘ 𝑐 ) ) ⊆ 𝑋 ) |
| 23 |
1
|
sscls |
⊢ ( ( 𝐽 ∈ Top ∧ ( ( int ‘ 𝐽 ) ‘ 𝑐 ) ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ 𝑐 ) ⊆ ( ( cls ‘ 𝐽 ) ‘ ( ( int ‘ 𝐽 ) ‘ 𝑐 ) ) ) |
| 24 |
9 20 23
|
syl2anc |
⊢ ( 𝑐 ∈ ( Clsd ‘ 𝐽 ) → ( ( int ‘ 𝐽 ) ‘ 𝑐 ) ⊆ ( ( cls ‘ 𝐽 ) ‘ ( ( int ‘ 𝐽 ) ‘ 𝑐 ) ) ) |
| 25 |
1
|
ntrss |
⊢ ( ( 𝐽 ∈ Top ∧ ( ( cls ‘ 𝐽 ) ‘ ( ( int ‘ 𝐽 ) ‘ 𝑐 ) ) ⊆ 𝑋 ∧ ( ( int ‘ 𝐽 ) ‘ 𝑐 ) ⊆ ( ( cls ‘ 𝐽 ) ‘ ( ( int ‘ 𝐽 ) ‘ 𝑐 ) ) ) → ( ( int ‘ 𝐽 ) ‘ ( ( int ‘ 𝐽 ) ‘ 𝑐 ) ) ⊆ ( ( int ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ ( ( int ‘ 𝐽 ) ‘ 𝑐 ) ) ) ) |
| 26 |
9 22 24 25
|
syl3anc |
⊢ ( 𝑐 ∈ ( Clsd ‘ 𝐽 ) → ( ( int ‘ 𝐽 ) ‘ ( ( int ‘ 𝐽 ) ‘ 𝑐 ) ) ⊆ ( ( int ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ ( ( int ‘ 𝐽 ) ‘ 𝑐 ) ) ) ) |
| 27 |
18 26
|
eqsstrrd |
⊢ ( 𝑐 ∈ ( Clsd ‘ 𝐽 ) → ( ( int ‘ 𝐽 ) ‘ 𝑐 ) ⊆ ( ( int ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ ( ( int ‘ 𝐽 ) ‘ 𝑐 ) ) ) ) |
| 28 |
16 27
|
eqssd |
⊢ ( 𝑐 ∈ ( Clsd ‘ 𝐽 ) → ( ( int ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ ( ( int ‘ 𝐽 ) ‘ 𝑐 ) ) ) = ( ( int ‘ 𝐽 ) ‘ 𝑐 ) ) |
| 29 |
28
|
adantl |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑐 ∈ ( Clsd ‘ 𝐽 ) ) → ( ( int ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ ( ( int ‘ 𝐽 ) ‘ 𝑐 ) ) ) = ( ( int ‘ 𝐽 ) ‘ 𝑐 ) ) |
| 30 |
|
2fveq3 |
⊢ ( 𝐴 = ( ( int ‘ 𝐽 ) ‘ 𝑐 ) → ( ( int ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) = ( ( int ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ ( ( int ‘ 𝐽 ) ‘ 𝑐 ) ) ) ) |
| 31 |
|
id |
⊢ ( 𝐴 = ( ( int ‘ 𝐽 ) ‘ 𝑐 ) → 𝐴 = ( ( int ‘ 𝐽 ) ‘ 𝑐 ) ) |
| 32 |
30 31
|
eqeq12d |
⊢ ( 𝐴 = ( ( int ‘ 𝐽 ) ‘ 𝑐 ) → ( ( ( int ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) = 𝐴 ↔ ( ( int ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ ( ( int ‘ 𝐽 ) ‘ 𝑐 ) ) ) = ( ( int ‘ 𝐽 ) ‘ 𝑐 ) ) ) |
| 33 |
29 32
|
syl5ibrcom |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) ∧ 𝑐 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝐴 = ( ( int ‘ 𝐽 ) ‘ 𝑐 ) → ( ( int ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) = 𝐴 ) ) |
| 34 |
33
|
rexlimdva |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) → ( ∃ 𝑐 ∈ ( Clsd ‘ 𝐽 ) 𝐴 = ( ( int ‘ 𝐽 ) ‘ 𝑐 ) → ( ( int ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) = 𝐴 ) ) |
| 35 |
8 34
|
impbid |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) → ( ( ( int ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) = 𝐴 ↔ ∃ 𝑐 ∈ ( Clsd ‘ 𝐽 ) 𝐴 = ( ( int ‘ 𝐽 ) ‘ 𝑐 ) ) ) |