| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑀 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐴 ) ) → 𝑀 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐴 ) ) |
| 2 |
|
simpl |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑀 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐴 ) ) → 𝐽 ∈ Top ) |
| 3 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
| 4 |
3
|
neiss2 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑀 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐴 ) ) → 𝐴 ⊆ ∪ 𝐽 ) |
| 5 |
3
|
neii1 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑀 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐴 ) ) → 𝑀 ⊆ ∪ 𝐽 ) |
| 6 |
3
|
neiint |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ ∪ 𝐽 ∧ 𝑀 ⊆ ∪ 𝐽 ) → ( 𝑀 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐴 ) ↔ 𝐴 ⊆ ( ( int ‘ 𝐽 ) ‘ 𝑀 ) ) ) |
| 7 |
2 4 5 6
|
syl3anc |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑀 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐴 ) ) → ( 𝑀 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐴 ) ↔ 𝐴 ⊆ ( ( int ‘ 𝐽 ) ‘ 𝑀 ) ) ) |
| 8 |
1 7
|
mpbid |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑀 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐴 ) ) → 𝐴 ⊆ ( ( int ‘ 𝐽 ) ‘ 𝑀 ) ) |
| 9 |
|
ssinss1 |
⊢ ( 𝐴 ⊆ ( ( int ‘ 𝐽 ) ‘ 𝑀 ) → ( 𝐴 ∩ 𝐵 ) ⊆ ( ( int ‘ 𝐽 ) ‘ 𝑀 ) ) |
| 10 |
8 9
|
syl |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑀 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐴 ) ) → ( 𝐴 ∩ 𝐵 ) ⊆ ( ( int ‘ 𝐽 ) ‘ 𝑀 ) ) |
| 11 |
10
|
3adant3 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑀 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐴 ) ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐵 ) ) → ( 𝐴 ∩ 𝐵 ) ⊆ ( ( int ‘ 𝐽 ) ‘ 𝑀 ) ) |
| 12 |
|
inss2 |
⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐵 |
| 13 |
|
simpr |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐵 ) ) → 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐵 ) ) |
| 14 |
|
simpl |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐵 ) ) → 𝐽 ∈ Top ) |
| 15 |
3
|
neiss2 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐵 ) ) → 𝐵 ⊆ ∪ 𝐽 ) |
| 16 |
3
|
neii1 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐵 ) ) → 𝑁 ⊆ ∪ 𝐽 ) |
| 17 |
3
|
neiint |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐵 ⊆ ∪ 𝐽 ∧ 𝑁 ⊆ ∪ 𝐽 ) → ( 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐵 ) ↔ 𝐵 ⊆ ( ( int ‘ 𝐽 ) ‘ 𝑁 ) ) ) |
| 18 |
14 15 16 17
|
syl3anc |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐵 ) ) → ( 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐵 ) ↔ 𝐵 ⊆ ( ( int ‘ 𝐽 ) ‘ 𝑁 ) ) ) |
| 19 |
13 18
|
mpbid |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐵 ) ) → 𝐵 ⊆ ( ( int ‘ 𝐽 ) ‘ 𝑁 ) ) |
| 20 |
19
|
3adant2 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑀 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐴 ) ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐵 ) ) → 𝐵 ⊆ ( ( int ‘ 𝐽 ) ‘ 𝑁 ) ) |
| 21 |
12 20
|
sstrid |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑀 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐴 ) ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐵 ) ) → ( 𝐴 ∩ 𝐵 ) ⊆ ( ( int ‘ 𝐽 ) ‘ 𝑁 ) ) |
| 22 |
11 21
|
ssind |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑀 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐴 ) ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐵 ) ) → ( 𝐴 ∩ 𝐵 ) ⊆ ( ( ( int ‘ 𝐽 ) ‘ 𝑀 ) ∩ ( ( int ‘ 𝐽 ) ‘ 𝑁 ) ) ) |
| 23 |
|
simp1 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑀 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐴 ) ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐵 ) ) → 𝐽 ∈ Top ) |
| 24 |
5
|
3adant3 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑀 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐴 ) ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐵 ) ) → 𝑀 ⊆ ∪ 𝐽 ) |
| 25 |
16
|
3adant2 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑀 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐴 ) ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐵 ) ) → 𝑁 ⊆ ∪ 𝐽 ) |
| 26 |
3
|
ntrin |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑀 ⊆ ∪ 𝐽 ∧ 𝑁 ⊆ ∪ 𝐽 ) → ( ( int ‘ 𝐽 ) ‘ ( 𝑀 ∩ 𝑁 ) ) = ( ( ( int ‘ 𝐽 ) ‘ 𝑀 ) ∩ ( ( int ‘ 𝐽 ) ‘ 𝑁 ) ) ) |
| 27 |
23 24 25 26
|
syl3anc |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑀 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐴 ) ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐵 ) ) → ( ( int ‘ 𝐽 ) ‘ ( 𝑀 ∩ 𝑁 ) ) = ( ( ( int ‘ 𝐽 ) ‘ 𝑀 ) ∩ ( ( int ‘ 𝐽 ) ‘ 𝑁 ) ) ) |
| 28 |
22 27
|
sseqtrrd |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑀 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐴 ) ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐵 ) ) → ( 𝐴 ∩ 𝐵 ) ⊆ ( ( int ‘ 𝐽 ) ‘ ( 𝑀 ∩ 𝑁 ) ) ) |
| 29 |
|
ssinss1 |
⊢ ( 𝐴 ⊆ ∪ 𝐽 → ( 𝐴 ∩ 𝐵 ) ⊆ ∪ 𝐽 ) |
| 30 |
4 29
|
syl |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑀 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐴 ) ) → ( 𝐴 ∩ 𝐵 ) ⊆ ∪ 𝐽 ) |
| 31 |
|
ssinss1 |
⊢ ( 𝑀 ⊆ ∪ 𝐽 → ( 𝑀 ∩ 𝑁 ) ⊆ ∪ 𝐽 ) |
| 32 |
5 31
|
syl |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑀 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐴 ) ) → ( 𝑀 ∩ 𝑁 ) ⊆ ∪ 𝐽 ) |
| 33 |
3
|
neiint |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐴 ∩ 𝐵 ) ⊆ ∪ 𝐽 ∧ ( 𝑀 ∩ 𝑁 ) ⊆ ∪ 𝐽 ) → ( ( 𝑀 ∩ 𝑁 ) ∈ ( ( nei ‘ 𝐽 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ↔ ( 𝐴 ∩ 𝐵 ) ⊆ ( ( int ‘ 𝐽 ) ‘ ( 𝑀 ∩ 𝑁 ) ) ) ) |
| 34 |
2 30 32 33
|
syl3anc |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑀 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐴 ) ) → ( ( 𝑀 ∩ 𝑁 ) ∈ ( ( nei ‘ 𝐽 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ↔ ( 𝐴 ∩ 𝐵 ) ⊆ ( ( int ‘ 𝐽 ) ‘ ( 𝑀 ∩ 𝑁 ) ) ) ) |
| 35 |
34
|
3adant3 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑀 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐴 ) ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐵 ) ) → ( ( 𝑀 ∩ 𝑁 ) ∈ ( ( nei ‘ 𝐽 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ↔ ( 𝐴 ∩ 𝐵 ) ⊆ ( ( int ‘ 𝐽 ) ‘ ( 𝑀 ∩ 𝑁 ) ) ) ) |
| 36 |
28 35
|
mpbird |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑀 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐴 ) ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝐵 ) ) → ( 𝑀 ∩ 𝑁 ) ∈ ( ( nei ‘ 𝐽 ) ‘ ( 𝐴 ∩ 𝐵 ) ) ) |