Metamath Proof Explorer


Theorem ntridm

Description: The interior operation is idempotent. (Contributed by NM, 2-Oct-2007)

Ref Expression
Hypothesis clscld.1 X=J
Assertion ntridm JTopSXintJintJS=intJS

Proof

Step Hyp Ref Expression
1 clscld.1 X=J
2 1 ntropn JTopSXintJSJ
3 1 ntrss3 JTopSXintJSX
4 1 isopn3 JTopintJSXintJSJintJintJS=intJS
5 3 4 syldan JTopSXintJSJintJintJS=intJS
6 2 5 mpbid JTopSXintJintJS=intJS