Metamath Proof Explorer


Theorem opnregcld

Description: A set is regularly closed iff it is the closure of some open set. (Contributed by Jeff Hankins, 27-Sep-2009)

Ref Expression
Hypothesis opnregcld.1 X = J
Assertion opnregcld J Top A X cls J int J A = A o J A = cls J o

Proof

Step Hyp Ref Expression
1 opnregcld.1 X = J
2 1 ntropn J Top A X int J A J
3 eqcom cls J int J A = A A = cls J int J A
4 3 biimpi cls J int J A = A A = cls J int J A
5 fveq2 o = int J A cls J o = cls J int J A
6 5 rspceeqv int J A J A = cls J int J A o J A = cls J o
7 2 4 6 syl2an J Top A X cls J int J A = A o J A = cls J o
8 7 ex J Top A X cls J int J A = A o J A = cls J o
9 simpl J Top o J J Top
10 1 eltopss J Top o J o X
11 1 clsss3 J Top o X cls J o X
12 10 11 syldan J Top o J cls J o X
13 1 ntrss2 J Top cls J o X int J cls J o cls J o
14 12 13 syldan J Top o J int J cls J o cls J o
15 1 clsss J Top cls J o X int J cls J o cls J o cls J int J cls J o cls J cls J o
16 9 12 14 15 syl3anc J Top o J cls J int J cls J o cls J cls J o
17 1 clsidm J Top o X cls J cls J o = cls J o
18 10 17 syldan J Top o J cls J cls J o = cls J o
19 16 18 sseqtrd J Top o J cls J int J cls J o cls J o
20 1 ntrss3 J Top cls J o X int J cls J o X
21 12 20 syldan J Top o J int J cls J o X
22 simpr J Top o J o J
23 1 sscls J Top o X o cls J o
24 10 23 syldan J Top o J o cls J o
25 1 ssntr J Top cls J o X o J o cls J o o int J cls J o
26 9 12 22 24 25 syl22anc J Top o J o int J cls J o
27 1 clsss J Top int J cls J o X o int J cls J o cls J o cls J int J cls J o
28 9 21 26 27 syl3anc J Top o J cls J o cls J int J cls J o
29 19 28 eqssd J Top o J cls J int J cls J o = cls J o
30 29 adantlr J Top A X o J cls J int J cls J o = cls J o
31 2fveq3 A = cls J o cls J int J A = cls J int J cls J o
32 id A = cls J o A = cls J o
33 31 32 eqeq12d A = cls J o cls J int J A = A cls J int J cls J o = cls J o
34 30 33 syl5ibrcom J Top A X o J A = cls J o cls J int J A = A
35 34 rexlimdva J Top A X o J A = cls J o cls J int J A = A
36 8 35 impbid J Top A X cls J int J A = A o J A = cls J o