Description: A set is regularly closed iff it is the closure of some open set. (Contributed by Jeff Hankins, 27-Sep-2009)
Ref | Expression | ||
---|---|---|---|
Hypothesis | opnregcld.1 | |
|
Assertion | opnregcld | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opnregcld.1 | |
|
2 | 1 | ntropn | |
3 | eqcom | |
|
4 | 3 | biimpi | |
5 | fveq2 | |
|
6 | 5 | rspceeqv | |
7 | 2 4 6 | syl2an | |
8 | 7 | ex | |
9 | simpl | |
|
10 | 1 | eltopss | |
11 | 1 | clsss3 | |
12 | 10 11 | syldan | |
13 | 1 | ntrss2 | |
14 | 12 13 | syldan | |
15 | 1 | clsss | |
16 | 9 12 14 15 | syl3anc | |
17 | 1 | clsidm | |
18 | 10 17 | syldan | |
19 | 16 18 | sseqtrd | |
20 | 1 | ntrss3 | |
21 | 12 20 | syldan | |
22 | simpr | |
|
23 | 1 | sscls | |
24 | 10 23 | syldan | |
25 | 1 | ssntr | |
26 | 9 12 22 24 25 | syl22anc | |
27 | 1 | clsss | |
28 | 9 21 26 27 | syl3anc | |
29 | 19 28 | eqssd | |
30 | 29 | adantlr | |
31 | 2fveq3 | |
|
32 | id | |
|
33 | 31 32 | eqeq12d | |
34 | 30 33 | syl5ibrcom | |
35 | 34 | rexlimdva | |
36 | 8 35 | impbid | |