| Step | Hyp | Ref | Expression | 
						
							| 1 |  | opnregcld.1 | ⊢ 𝑋  =  ∪  𝐽 | 
						
							| 2 | 1 | ntropn | ⊢ ( ( 𝐽  ∈  Top  ∧  𝐴  ⊆  𝑋 )  →  ( ( int ‘ 𝐽 ) ‘ 𝐴 )  ∈  𝐽 ) | 
						
							| 3 |  | eqcom | ⊢ ( ( ( cls ‘ 𝐽 ) ‘ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) )  =  𝐴  ↔  𝐴  =  ( ( cls ‘ 𝐽 ) ‘ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ) | 
						
							| 4 | 3 | biimpi | ⊢ ( ( ( cls ‘ 𝐽 ) ‘ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) )  =  𝐴  →  𝐴  =  ( ( cls ‘ 𝐽 ) ‘ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ) | 
						
							| 5 |  | fveq2 | ⊢ ( 𝑜  =  ( ( int ‘ 𝐽 ) ‘ 𝐴 )  →  ( ( cls ‘ 𝐽 ) ‘ 𝑜 )  =  ( ( cls ‘ 𝐽 ) ‘ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ) | 
						
							| 6 | 5 | rspceeqv | ⊢ ( ( ( ( int ‘ 𝐽 ) ‘ 𝐴 )  ∈  𝐽  ∧  𝐴  =  ( ( cls ‘ 𝐽 ) ‘ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) )  →  ∃ 𝑜  ∈  𝐽 𝐴  =  ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ) | 
						
							| 7 | 2 4 6 | syl2an | ⊢ ( ( ( 𝐽  ∈  Top  ∧  𝐴  ⊆  𝑋 )  ∧  ( ( cls ‘ 𝐽 ) ‘ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) )  =  𝐴 )  →  ∃ 𝑜  ∈  𝐽 𝐴  =  ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ) | 
						
							| 8 | 7 | ex | ⊢ ( ( 𝐽  ∈  Top  ∧  𝐴  ⊆  𝑋 )  →  ( ( ( cls ‘ 𝐽 ) ‘ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) )  =  𝐴  →  ∃ 𝑜  ∈  𝐽 𝐴  =  ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ) ) | 
						
							| 9 |  | simpl | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑜  ∈  𝐽 )  →  𝐽  ∈  Top ) | 
						
							| 10 | 1 | eltopss | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑜  ∈  𝐽 )  →  𝑜  ⊆  𝑋 ) | 
						
							| 11 | 1 | clsss3 | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑜  ⊆  𝑋 )  →  ( ( cls ‘ 𝐽 ) ‘ 𝑜 )  ⊆  𝑋 ) | 
						
							| 12 | 10 11 | syldan | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑜  ∈  𝐽 )  →  ( ( cls ‘ 𝐽 ) ‘ 𝑜 )  ⊆  𝑋 ) | 
						
							| 13 | 1 | ntrss2 | ⊢ ( ( 𝐽  ∈  Top  ∧  ( ( cls ‘ 𝐽 ) ‘ 𝑜 )  ⊆  𝑋 )  →  ( ( int ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) )  ⊆  ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ) | 
						
							| 14 | 12 13 | syldan | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑜  ∈  𝐽 )  →  ( ( int ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) )  ⊆  ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ) | 
						
							| 15 | 1 | clsss | ⊢ ( ( 𝐽  ∈  Top  ∧  ( ( cls ‘ 𝐽 ) ‘ 𝑜 )  ⊆  𝑋  ∧  ( ( int ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) )  ⊆  ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) )  →  ( ( cls ‘ 𝐽 ) ‘ ( ( int ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ) )  ⊆  ( ( cls ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ) ) | 
						
							| 16 | 9 12 14 15 | syl3anc | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑜  ∈  𝐽 )  →  ( ( cls ‘ 𝐽 ) ‘ ( ( int ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ) )  ⊆  ( ( cls ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ) ) | 
						
							| 17 | 1 | clsidm | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑜  ⊆  𝑋 )  →  ( ( cls ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) )  =  ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ) | 
						
							| 18 | 10 17 | syldan | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑜  ∈  𝐽 )  →  ( ( cls ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) )  =  ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ) | 
						
							| 19 | 16 18 | sseqtrd | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑜  ∈  𝐽 )  →  ( ( cls ‘ 𝐽 ) ‘ ( ( int ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ) )  ⊆  ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ) | 
						
							| 20 | 1 | ntrss3 | ⊢ ( ( 𝐽  ∈  Top  ∧  ( ( cls ‘ 𝐽 ) ‘ 𝑜 )  ⊆  𝑋 )  →  ( ( int ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) )  ⊆  𝑋 ) | 
						
							| 21 | 12 20 | syldan | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑜  ∈  𝐽 )  →  ( ( int ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) )  ⊆  𝑋 ) | 
						
							| 22 |  | simpr | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑜  ∈  𝐽 )  →  𝑜  ∈  𝐽 ) | 
						
							| 23 | 1 | sscls | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑜  ⊆  𝑋 )  →  𝑜  ⊆  ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ) | 
						
							| 24 | 10 23 | syldan | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑜  ∈  𝐽 )  →  𝑜  ⊆  ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ) | 
						
							| 25 | 1 | ssntr | ⊢ ( ( ( 𝐽  ∈  Top  ∧  ( ( cls ‘ 𝐽 ) ‘ 𝑜 )  ⊆  𝑋 )  ∧  ( 𝑜  ∈  𝐽  ∧  𝑜  ⊆  ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ) )  →  𝑜  ⊆  ( ( int ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ) ) | 
						
							| 26 | 9 12 22 24 25 | syl22anc | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑜  ∈  𝐽 )  →  𝑜  ⊆  ( ( int ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ) ) | 
						
							| 27 | 1 | clsss | ⊢ ( ( 𝐽  ∈  Top  ∧  ( ( int ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) )  ⊆  𝑋  ∧  𝑜  ⊆  ( ( int ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ) )  →  ( ( cls ‘ 𝐽 ) ‘ 𝑜 )  ⊆  ( ( cls ‘ 𝐽 ) ‘ ( ( int ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ) ) ) | 
						
							| 28 | 9 21 26 27 | syl3anc | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑜  ∈  𝐽 )  →  ( ( cls ‘ 𝐽 ) ‘ 𝑜 )  ⊆  ( ( cls ‘ 𝐽 ) ‘ ( ( int ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ) ) ) | 
						
							| 29 | 19 28 | eqssd | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑜  ∈  𝐽 )  →  ( ( cls ‘ 𝐽 ) ‘ ( ( int ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ) )  =  ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ) | 
						
							| 30 | 29 | adantlr | ⊢ ( ( ( 𝐽  ∈  Top  ∧  𝐴  ⊆  𝑋 )  ∧  𝑜  ∈  𝐽 )  →  ( ( cls ‘ 𝐽 ) ‘ ( ( int ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ) )  =  ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ) | 
						
							| 31 |  | 2fveq3 | ⊢ ( 𝐴  =  ( ( cls ‘ 𝐽 ) ‘ 𝑜 )  →  ( ( cls ‘ 𝐽 ) ‘ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) )  =  ( ( cls ‘ 𝐽 ) ‘ ( ( int ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ) ) ) | 
						
							| 32 |  | id | ⊢ ( 𝐴  =  ( ( cls ‘ 𝐽 ) ‘ 𝑜 )  →  𝐴  =  ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ) | 
						
							| 33 | 31 32 | eqeq12d | ⊢ ( 𝐴  =  ( ( cls ‘ 𝐽 ) ‘ 𝑜 )  →  ( ( ( cls ‘ 𝐽 ) ‘ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) )  =  𝐴  ↔  ( ( cls ‘ 𝐽 ) ‘ ( ( int ‘ 𝐽 ) ‘ ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ) )  =  ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ) ) | 
						
							| 34 | 30 33 | syl5ibrcom | ⊢ ( ( ( 𝐽  ∈  Top  ∧  𝐴  ⊆  𝑋 )  ∧  𝑜  ∈  𝐽 )  →  ( 𝐴  =  ( ( cls ‘ 𝐽 ) ‘ 𝑜 )  →  ( ( cls ‘ 𝐽 ) ‘ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) )  =  𝐴 ) ) | 
						
							| 35 | 34 | rexlimdva | ⊢ ( ( 𝐽  ∈  Top  ∧  𝐴  ⊆  𝑋 )  →  ( ∃ 𝑜  ∈  𝐽 𝐴  =  ( ( cls ‘ 𝐽 ) ‘ 𝑜 )  →  ( ( cls ‘ 𝐽 ) ‘ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) )  =  𝐴 ) ) | 
						
							| 36 | 8 35 | impbid | ⊢ ( ( 𝐽  ∈  Top  ∧  𝐴  ⊆  𝑋 )  →  ( ( ( cls ‘ 𝐽 ) ‘ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) )  =  𝐴  ↔  ∃ 𝑜  ∈  𝐽 𝐴  =  ( ( cls ‘ 𝐽 ) ‘ 𝑜 ) ) ) |