Metamath Proof Explorer


Theorem clsun

Description: A pairwise union of closures is the closure of the union. (Contributed by Jeff Hankins, 31-Aug-2009)

Ref Expression
Hypothesis clsun.1 𝑋 = 𝐽
Assertion clsun ( ( 𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ ( 𝐴𝐵 ) ) = ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ∪ ( ( cls ‘ 𝐽 ) ‘ 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 clsun.1 𝑋 = 𝐽
2 difundi ( 𝑋 ∖ ( 𝐴𝐵 ) ) = ( ( 𝑋𝐴 ) ∩ ( 𝑋𝐵 ) )
3 2 fveq2i ( ( int ‘ 𝐽 ) ‘ ( 𝑋 ∖ ( 𝐴𝐵 ) ) ) = ( ( int ‘ 𝐽 ) ‘ ( ( 𝑋𝐴 ) ∩ ( 𝑋𝐵 ) ) )
4 difss ( 𝑋𝐴 ) ⊆ 𝑋
5 difss ( 𝑋𝐵 ) ⊆ 𝑋
6 1 ntrin ( ( 𝐽 ∈ Top ∧ ( 𝑋𝐴 ) ⊆ 𝑋 ∧ ( 𝑋𝐵 ) ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ ( ( 𝑋𝐴 ) ∩ ( 𝑋𝐵 ) ) ) = ( ( ( int ‘ 𝐽 ) ‘ ( 𝑋𝐴 ) ) ∩ ( ( int ‘ 𝐽 ) ‘ ( 𝑋𝐵 ) ) ) )
7 4 5 6 mp3an23 ( 𝐽 ∈ Top → ( ( int ‘ 𝐽 ) ‘ ( ( 𝑋𝐴 ) ∩ ( 𝑋𝐵 ) ) ) = ( ( ( int ‘ 𝐽 ) ‘ ( 𝑋𝐴 ) ) ∩ ( ( int ‘ 𝐽 ) ‘ ( 𝑋𝐵 ) ) ) )
8 7 3ad2ant1 ( ( 𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋 ) → ( ( int ‘ 𝐽 ) ‘ ( ( 𝑋𝐴 ) ∩ ( 𝑋𝐵 ) ) ) = ( ( ( int ‘ 𝐽 ) ‘ ( 𝑋𝐴 ) ) ∩ ( ( int ‘ 𝐽 ) ‘ ( 𝑋𝐵 ) ) ) )
9 3 8 syl5eq ( ( 𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋 ) → ( ( int ‘ 𝐽 ) ‘ ( 𝑋 ∖ ( 𝐴𝐵 ) ) ) = ( ( ( int ‘ 𝐽 ) ‘ ( 𝑋𝐴 ) ) ∩ ( ( int ‘ 𝐽 ) ‘ ( 𝑋𝐵 ) ) ) )
10 simp1 ( ( 𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋 ) → 𝐽 ∈ Top )
11 unss ( ( 𝐴𝑋𝐵𝑋 ) ↔ ( 𝐴𝐵 ) ⊆ 𝑋 )
12 11 biimpi ( ( 𝐴𝑋𝐵𝑋 ) → ( 𝐴𝐵 ) ⊆ 𝑋 )
13 12 3adant1 ( ( 𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋 ) → ( 𝐴𝐵 ) ⊆ 𝑋 )
14 1 ntrdif ( ( 𝐽 ∈ Top ∧ ( 𝐴𝐵 ) ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ ( 𝑋 ∖ ( 𝐴𝐵 ) ) ) = ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ ( 𝐴𝐵 ) ) ) )
15 10 13 14 syl2anc ( ( 𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋 ) → ( ( int ‘ 𝐽 ) ‘ ( 𝑋 ∖ ( 𝐴𝐵 ) ) ) = ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ ( 𝐴𝐵 ) ) ) )
16 1 ntrdif ( ( 𝐽 ∈ Top ∧ 𝐴𝑋 ) → ( ( int ‘ 𝐽 ) ‘ ( 𝑋𝐴 ) ) = ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) )
17 16 3adant3 ( ( 𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋 ) → ( ( int ‘ 𝐽 ) ‘ ( 𝑋𝐴 ) ) = ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) )
18 1 ntrdif ( ( 𝐽 ∈ Top ∧ 𝐵𝑋 ) → ( ( int ‘ 𝐽 ) ‘ ( 𝑋𝐵 ) ) = ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝐵 ) ) )
19 18 3adant2 ( ( 𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋 ) → ( ( int ‘ 𝐽 ) ‘ ( 𝑋𝐵 ) ) = ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝐵 ) ) )
20 17 19 ineq12d ( ( 𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋 ) → ( ( ( int ‘ 𝐽 ) ‘ ( 𝑋𝐴 ) ) ∩ ( ( int ‘ 𝐽 ) ‘ ( 𝑋𝐵 ) ) ) = ( ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) ∩ ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝐵 ) ) ) )
21 difundi ( 𝑋 ∖ ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ∪ ( ( cls ‘ 𝐽 ) ‘ 𝐵 ) ) ) = ( ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) ∩ ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝐵 ) ) )
22 20 21 eqtr4di ( ( 𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋 ) → ( ( ( int ‘ 𝐽 ) ‘ ( 𝑋𝐴 ) ) ∩ ( ( int ‘ 𝐽 ) ‘ ( 𝑋𝐵 ) ) ) = ( 𝑋 ∖ ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ∪ ( ( cls ‘ 𝐽 ) ‘ 𝐵 ) ) ) )
23 9 15 22 3eqtr3d ( ( 𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋 ) → ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ ( 𝐴𝐵 ) ) ) = ( 𝑋 ∖ ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ∪ ( ( cls ‘ 𝐽 ) ‘ 𝐵 ) ) ) )
24 23 difeq2d ( ( 𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋 ) → ( 𝑋 ∖ ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ ( 𝐴𝐵 ) ) ) ) = ( 𝑋 ∖ ( 𝑋 ∖ ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ∪ ( ( cls ‘ 𝐽 ) ‘ 𝐵 ) ) ) ) )
25 1 clscld ( ( 𝐽 ∈ Top ∧ ( 𝐴𝐵 ) ⊆ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ ( 𝐴𝐵 ) ) ∈ ( Clsd ‘ 𝐽 ) )
26 10 13 25 syl2anc ( ( 𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ ( 𝐴𝐵 ) ) ∈ ( Clsd ‘ 𝐽 ) )
27 1 cldss ( ( ( cls ‘ 𝐽 ) ‘ ( 𝐴𝐵 ) ) ∈ ( Clsd ‘ 𝐽 ) → ( ( cls ‘ 𝐽 ) ‘ ( 𝐴𝐵 ) ) ⊆ 𝑋 )
28 26 27 syl ( ( 𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ ( 𝐴𝐵 ) ) ⊆ 𝑋 )
29 dfss4 ( ( ( cls ‘ 𝐽 ) ‘ ( 𝐴𝐵 ) ) ⊆ 𝑋 ↔ ( 𝑋 ∖ ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ ( 𝐴𝐵 ) ) ) ) = ( ( cls ‘ 𝐽 ) ‘ ( 𝐴𝐵 ) ) )
30 28 29 sylib ( ( 𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋 ) → ( 𝑋 ∖ ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ ( 𝐴𝐵 ) ) ) ) = ( ( cls ‘ 𝐽 ) ‘ ( 𝐴𝐵 ) ) )
31 1 clsss3 ( ( 𝐽 ∈ Top ∧ 𝐴𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ⊆ 𝑋 )
32 31 3adant3 ( ( 𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ⊆ 𝑋 )
33 1 clsss3 ( ( 𝐽 ∈ Top ∧ 𝐵𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝐵 ) ⊆ 𝑋 )
34 33 3adant2 ( ( 𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝐵 ) ⊆ 𝑋 )
35 32 34 jca ( ( 𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋 ) → ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ⊆ 𝑋 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐵 ) ⊆ 𝑋 ) )
36 unss ( ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ⊆ 𝑋 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐵 ) ⊆ 𝑋 ) ↔ ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ∪ ( ( cls ‘ 𝐽 ) ‘ 𝐵 ) ) ⊆ 𝑋 )
37 dfss4 ( ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ∪ ( ( cls ‘ 𝐽 ) ‘ 𝐵 ) ) ⊆ 𝑋 ↔ ( 𝑋 ∖ ( 𝑋 ∖ ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ∪ ( ( cls ‘ 𝐽 ) ‘ 𝐵 ) ) ) ) = ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ∪ ( ( cls ‘ 𝐽 ) ‘ 𝐵 ) ) )
38 36 37 bitri ( ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ⊆ 𝑋 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐵 ) ⊆ 𝑋 ) ↔ ( 𝑋 ∖ ( 𝑋 ∖ ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ∪ ( ( cls ‘ 𝐽 ) ‘ 𝐵 ) ) ) ) = ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ∪ ( ( cls ‘ 𝐽 ) ‘ 𝐵 ) ) )
39 35 38 sylib ( ( 𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋 ) → ( 𝑋 ∖ ( 𝑋 ∖ ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ∪ ( ( cls ‘ 𝐽 ) ‘ 𝐵 ) ) ) ) = ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ∪ ( ( cls ‘ 𝐽 ) ‘ 𝐵 ) ) )
40 24 30 39 3eqtr3d ( ( 𝐽 ∈ Top ∧ 𝐴𝑋𝐵𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ ( 𝐴𝐵 ) ) = ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ∪ ( ( cls ‘ 𝐽 ) ‘ 𝐵 ) ) )