| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clsun.1 |
⊢ 𝑋 = ∪ 𝐽 |
| 2 |
|
difundi |
⊢ ( 𝑋 ∖ ( 𝐴 ∪ 𝐵 ) ) = ( ( 𝑋 ∖ 𝐴 ) ∩ ( 𝑋 ∖ 𝐵 ) ) |
| 3 |
2
|
fveq2i |
⊢ ( ( int ‘ 𝐽 ) ‘ ( 𝑋 ∖ ( 𝐴 ∪ 𝐵 ) ) ) = ( ( int ‘ 𝐽 ) ‘ ( ( 𝑋 ∖ 𝐴 ) ∩ ( 𝑋 ∖ 𝐵 ) ) ) |
| 4 |
|
difss |
⊢ ( 𝑋 ∖ 𝐴 ) ⊆ 𝑋 |
| 5 |
|
difss |
⊢ ( 𝑋 ∖ 𝐵 ) ⊆ 𝑋 |
| 6 |
1
|
ntrin |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑋 ∖ 𝐴 ) ⊆ 𝑋 ∧ ( 𝑋 ∖ 𝐵 ) ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ ( ( 𝑋 ∖ 𝐴 ) ∩ ( 𝑋 ∖ 𝐵 ) ) ) = ( ( ( int ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝐴 ) ) ∩ ( ( int ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝐵 ) ) ) ) |
| 7 |
4 5 6
|
mp3an23 |
⊢ ( 𝐽 ∈ Top → ( ( int ‘ 𝐽 ) ‘ ( ( 𝑋 ∖ 𝐴 ) ∩ ( 𝑋 ∖ 𝐵 ) ) ) = ( ( ( int ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝐴 ) ) ∩ ( ( int ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝐵 ) ) ) ) |
| 8 |
7
|
3ad2ant1 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ ( ( 𝑋 ∖ 𝐴 ) ∩ ( 𝑋 ∖ 𝐵 ) ) ) = ( ( ( int ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝐴 ) ) ∩ ( ( int ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝐵 ) ) ) ) |
| 9 |
3 8
|
eqtrid |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ ( 𝑋 ∖ ( 𝐴 ∪ 𝐵 ) ) ) = ( ( ( int ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝐴 ) ) ∩ ( ( int ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝐵 ) ) ) ) |
| 10 |
|
simp1 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) → 𝐽 ∈ Top ) |
| 11 |
|
unss |
⊢ ( ( 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) ↔ ( 𝐴 ∪ 𝐵 ) ⊆ 𝑋 ) |
| 12 |
11
|
biimpi |
⊢ ( ( 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) → ( 𝐴 ∪ 𝐵 ) ⊆ 𝑋 ) |
| 13 |
12
|
3adant1 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) → ( 𝐴 ∪ 𝐵 ) ⊆ 𝑋 ) |
| 14 |
1
|
ntrdif |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐴 ∪ 𝐵 ) ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ ( 𝑋 ∖ ( 𝐴 ∪ 𝐵 ) ) ) = ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ ( 𝐴 ∪ 𝐵 ) ) ) ) |
| 15 |
10 13 14
|
syl2anc |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ ( 𝑋 ∖ ( 𝐴 ∪ 𝐵 ) ) ) = ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ ( 𝐴 ∪ 𝐵 ) ) ) ) |
| 16 |
1
|
ntrdif |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝐴 ) ) = ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) ) |
| 17 |
16
|
3adant3 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝐴 ) ) = ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) ) |
| 18 |
1
|
ntrdif |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐵 ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝐵 ) ) = ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝐵 ) ) ) |
| 19 |
18
|
3adant2 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝐵 ) ) = ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝐵 ) ) ) |
| 20 |
17 19
|
ineq12d |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) → ( ( ( int ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝐴 ) ) ∩ ( ( int ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝐵 ) ) ) = ( ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) ∩ ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝐵 ) ) ) ) |
| 21 |
|
difundi |
⊢ ( 𝑋 ∖ ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ∪ ( ( cls ‘ 𝐽 ) ‘ 𝐵 ) ) ) = ( ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) ∩ ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝐵 ) ) ) |
| 22 |
20 21
|
eqtr4di |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) → ( ( ( int ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝐴 ) ) ∩ ( ( int ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝐵 ) ) ) = ( 𝑋 ∖ ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ∪ ( ( cls ‘ 𝐽 ) ‘ 𝐵 ) ) ) ) |
| 23 |
9 15 22
|
3eqtr3d |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) → ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ ( 𝐴 ∪ 𝐵 ) ) ) = ( 𝑋 ∖ ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ∪ ( ( cls ‘ 𝐽 ) ‘ 𝐵 ) ) ) ) |
| 24 |
23
|
difeq2d |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) → ( 𝑋 ∖ ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ ( 𝐴 ∪ 𝐵 ) ) ) ) = ( 𝑋 ∖ ( 𝑋 ∖ ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ∪ ( ( cls ‘ 𝐽 ) ‘ 𝐵 ) ) ) ) ) |
| 25 |
1
|
clscld |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐴 ∪ 𝐵 ) ⊆ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ ( 𝐴 ∪ 𝐵 ) ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 26 |
10 13 25
|
syl2anc |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ ( 𝐴 ∪ 𝐵 ) ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 27 |
1
|
cldss |
⊢ ( ( ( cls ‘ 𝐽 ) ‘ ( 𝐴 ∪ 𝐵 ) ) ∈ ( Clsd ‘ 𝐽 ) → ( ( cls ‘ 𝐽 ) ‘ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝑋 ) |
| 28 |
26 27
|
syl |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝑋 ) |
| 29 |
|
dfss4 |
⊢ ( ( ( cls ‘ 𝐽 ) ‘ ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝑋 ↔ ( 𝑋 ∖ ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ ( 𝐴 ∪ 𝐵 ) ) ) ) = ( ( cls ‘ 𝐽 ) ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
| 30 |
28 29
|
sylib |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) → ( 𝑋 ∖ ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ ( 𝐴 ∪ 𝐵 ) ) ) ) = ( ( cls ‘ 𝐽 ) ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
| 31 |
1
|
clsss3 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ⊆ 𝑋 ) |
| 32 |
31
|
3adant3 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ⊆ 𝑋 ) |
| 33 |
1
|
clsss3 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐵 ⊆ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝐵 ) ⊆ 𝑋 ) |
| 34 |
33
|
3adant2 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝐵 ) ⊆ 𝑋 ) |
| 35 |
32 34
|
jca |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) → ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ⊆ 𝑋 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐵 ) ⊆ 𝑋 ) ) |
| 36 |
|
unss |
⊢ ( ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ⊆ 𝑋 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐵 ) ⊆ 𝑋 ) ↔ ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ∪ ( ( cls ‘ 𝐽 ) ‘ 𝐵 ) ) ⊆ 𝑋 ) |
| 37 |
|
dfss4 |
⊢ ( ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ∪ ( ( cls ‘ 𝐽 ) ‘ 𝐵 ) ) ⊆ 𝑋 ↔ ( 𝑋 ∖ ( 𝑋 ∖ ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ∪ ( ( cls ‘ 𝐽 ) ‘ 𝐵 ) ) ) ) = ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ∪ ( ( cls ‘ 𝐽 ) ‘ 𝐵 ) ) ) |
| 38 |
36 37
|
bitri |
⊢ ( ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ⊆ 𝑋 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝐵 ) ⊆ 𝑋 ) ↔ ( 𝑋 ∖ ( 𝑋 ∖ ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ∪ ( ( cls ‘ 𝐽 ) ‘ 𝐵 ) ) ) ) = ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ∪ ( ( cls ‘ 𝐽 ) ‘ 𝐵 ) ) ) |
| 39 |
35 38
|
sylib |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) → ( 𝑋 ∖ ( 𝑋 ∖ ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ∪ ( ( cls ‘ 𝐽 ) ‘ 𝐵 ) ) ) ) = ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ∪ ( ( cls ‘ 𝐽 ) ‘ 𝐵 ) ) ) |
| 40 |
24 30 39
|
3eqtr3d |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ ( 𝐴 ∪ 𝐵 ) ) = ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ∪ ( ( cls ‘ 𝐽 ) ‘ 𝐵 ) ) ) |