| Step |
Hyp |
Ref |
Expression |
| 1 |
|
opnbnd.1 |
⊢ 𝑋 = ∪ 𝐽 |
| 2 |
|
disjdif |
⊢ ( ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∩ ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ∖ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ) = ∅ |
| 3 |
2
|
a1i |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) → ( ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∩ ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ∖ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ) = ∅ ) |
| 4 |
|
ineq1 |
⊢ ( ( ( int ‘ 𝐽 ) ‘ 𝐴 ) = 𝐴 → ( ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∩ ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ∖ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ) = ( 𝐴 ∩ ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ∖ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ) ) |
| 5 |
4
|
eqeq1d |
⊢ ( ( ( int ‘ 𝐽 ) ‘ 𝐴 ) = 𝐴 → ( ( ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ∩ ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ∖ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ) = ∅ ↔ ( 𝐴 ∩ ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ∖ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ) = ∅ ) ) |
| 6 |
3 5
|
syl5ibcom |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) → ( ( ( int ‘ 𝐽 ) ‘ 𝐴 ) = 𝐴 → ( 𝐴 ∩ ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ∖ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ) = ∅ ) ) |
| 7 |
1
|
ntrss2 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ⊆ 𝐴 ) |
| 8 |
7
|
adantr |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝐴 ∩ ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ∖ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ) = ∅ ) → ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ⊆ 𝐴 ) |
| 9 |
|
inssdif0 |
⊢ ( ( 𝐴 ∩ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) ⊆ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ↔ ( 𝐴 ∩ ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ∖ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ) = ∅ ) |
| 10 |
1
|
sscls |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) → 𝐴 ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) |
| 11 |
|
dfss2 |
⊢ ( 𝐴 ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ↔ ( 𝐴 ∩ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) = 𝐴 ) |
| 12 |
10 11
|
sylib |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐴 ∩ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) = 𝐴 ) |
| 13 |
12
|
eqcomd |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) → 𝐴 = ( 𝐴 ∩ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) ) |
| 14 |
|
eqimss |
⊢ ( 𝐴 = ( 𝐴 ∩ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) → 𝐴 ⊆ ( 𝐴 ∩ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) ) |
| 15 |
13 14
|
syl |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) → 𝐴 ⊆ ( 𝐴 ∩ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) ) |
| 16 |
|
sstr |
⊢ ( ( 𝐴 ⊆ ( 𝐴 ∩ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) ∧ ( 𝐴 ∩ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) ⊆ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) → 𝐴 ⊆ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) |
| 17 |
15 16
|
sylan |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝐴 ∩ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) ⊆ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) → 𝐴 ⊆ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) |
| 18 |
9 17
|
sylan2br |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝐴 ∩ ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ∖ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ) = ∅ ) → 𝐴 ⊆ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) |
| 19 |
8 18
|
eqssd |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) ∧ ( 𝐴 ∩ ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ∖ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ) = ∅ ) → ( ( int ‘ 𝐽 ) ‘ 𝐴 ) = 𝐴 ) |
| 20 |
19
|
ex |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) → ( ( 𝐴 ∩ ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ∖ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ) = ∅ → ( ( int ‘ 𝐽 ) ‘ 𝐴 ) = 𝐴 ) ) |
| 21 |
6 20
|
impbid |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) → ( ( ( int ‘ 𝐽 ) ‘ 𝐴 ) = 𝐴 ↔ ( 𝐴 ∩ ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ∖ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ) = ∅ ) ) |
| 22 |
1
|
isopn3 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐴 ∈ 𝐽 ↔ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) = 𝐴 ) ) |
| 23 |
1
|
topbnd |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) → ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ∩ ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝐴 ) ) ) = ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ∖ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ) |
| 24 |
23
|
ineq2d |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐴 ∩ ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ∩ ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝐴 ) ) ) ) = ( 𝐴 ∩ ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ∖ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ) ) |
| 25 |
24
|
eqeq1d |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) → ( ( 𝐴 ∩ ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ∩ ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝐴 ) ) ) ) = ∅ ↔ ( 𝐴 ∩ ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ∖ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ) = ∅ ) ) |
| 26 |
21 22 25
|
3bitr4d |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐴 ∈ 𝐽 ↔ ( 𝐴 ∩ ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ∩ ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ 𝐴 ) ) ) ) = ∅ ) ) |