| Step | Hyp | Ref | Expression | 
						
							| 1 |  | opnbnd.1 | ⊢ 𝑋  =  ∪  𝐽 | 
						
							| 2 |  | disjdif | ⊢ ( ( ( int ‘ 𝐽 ) ‘ 𝐴 )  ∩  ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 )  ∖  ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) )  =  ∅ | 
						
							| 3 | 2 | a1i | ⊢ ( ( 𝐽  ∈  Top  ∧  𝐴  ⊆  𝑋 )  →  ( ( ( int ‘ 𝐽 ) ‘ 𝐴 )  ∩  ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 )  ∖  ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) )  =  ∅ ) | 
						
							| 4 |  | ineq1 | ⊢ ( ( ( int ‘ 𝐽 ) ‘ 𝐴 )  =  𝐴  →  ( ( ( int ‘ 𝐽 ) ‘ 𝐴 )  ∩  ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 )  ∖  ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) )  =  ( 𝐴  ∩  ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 )  ∖  ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ) ) | 
						
							| 5 | 4 | eqeq1d | ⊢ ( ( ( int ‘ 𝐽 ) ‘ 𝐴 )  =  𝐴  →  ( ( ( ( int ‘ 𝐽 ) ‘ 𝐴 )  ∩  ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 )  ∖  ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) )  =  ∅  ↔  ( 𝐴  ∩  ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 )  ∖  ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) )  =  ∅ ) ) | 
						
							| 6 | 3 5 | syl5ibcom | ⊢ ( ( 𝐽  ∈  Top  ∧  𝐴  ⊆  𝑋 )  →  ( ( ( int ‘ 𝐽 ) ‘ 𝐴 )  =  𝐴  →  ( 𝐴  ∩  ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 )  ∖  ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) )  =  ∅ ) ) | 
						
							| 7 | 1 | ntrss2 | ⊢ ( ( 𝐽  ∈  Top  ∧  𝐴  ⊆  𝑋 )  →  ( ( int ‘ 𝐽 ) ‘ 𝐴 )  ⊆  𝐴 ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( ( 𝐽  ∈  Top  ∧  𝐴  ⊆  𝑋 )  ∧  ( 𝐴  ∩  ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 )  ∖  ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) )  =  ∅ )  →  ( ( int ‘ 𝐽 ) ‘ 𝐴 )  ⊆  𝐴 ) | 
						
							| 9 |  | inssdif0 | ⊢ ( ( 𝐴  ∩  ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) )  ⊆  ( ( int ‘ 𝐽 ) ‘ 𝐴 )  ↔  ( 𝐴  ∩  ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 )  ∖  ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) )  =  ∅ ) | 
						
							| 10 | 1 | sscls | ⊢ ( ( 𝐽  ∈  Top  ∧  𝐴  ⊆  𝑋 )  →  𝐴  ⊆  ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) | 
						
							| 11 |  | dfss2 | ⊢ ( 𝐴  ⊆  ( ( cls ‘ 𝐽 ) ‘ 𝐴 )  ↔  ( 𝐴  ∩  ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) )  =  𝐴 ) | 
						
							| 12 | 10 11 | sylib | ⊢ ( ( 𝐽  ∈  Top  ∧  𝐴  ⊆  𝑋 )  →  ( 𝐴  ∩  ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) )  =  𝐴 ) | 
						
							| 13 | 12 | eqcomd | ⊢ ( ( 𝐽  ∈  Top  ∧  𝐴  ⊆  𝑋 )  →  𝐴  =  ( 𝐴  ∩  ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) ) | 
						
							| 14 |  | eqimss | ⊢ ( 𝐴  =  ( 𝐴  ∩  ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) )  →  𝐴  ⊆  ( 𝐴  ∩  ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) ) | 
						
							| 15 | 13 14 | syl | ⊢ ( ( 𝐽  ∈  Top  ∧  𝐴  ⊆  𝑋 )  →  𝐴  ⊆  ( 𝐴  ∩  ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) ) | 
						
							| 16 |  | sstr | ⊢ ( ( 𝐴  ⊆  ( 𝐴  ∩  ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) )  ∧  ( 𝐴  ∩  ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) )  ⊆  ( ( int ‘ 𝐽 ) ‘ 𝐴 ) )  →  𝐴  ⊆  ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) | 
						
							| 17 | 15 16 | sylan | ⊢ ( ( ( 𝐽  ∈  Top  ∧  𝐴  ⊆  𝑋 )  ∧  ( 𝐴  ∩  ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) )  ⊆  ( ( int ‘ 𝐽 ) ‘ 𝐴 ) )  →  𝐴  ⊆  ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) | 
						
							| 18 | 9 17 | sylan2br | ⊢ ( ( ( 𝐽  ∈  Top  ∧  𝐴  ⊆  𝑋 )  ∧  ( 𝐴  ∩  ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 )  ∖  ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) )  =  ∅ )  →  𝐴  ⊆  ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) | 
						
							| 19 | 8 18 | eqssd | ⊢ ( ( ( 𝐽  ∈  Top  ∧  𝐴  ⊆  𝑋 )  ∧  ( 𝐴  ∩  ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 )  ∖  ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) )  =  ∅ )  →  ( ( int ‘ 𝐽 ) ‘ 𝐴 )  =  𝐴 ) | 
						
							| 20 | 19 | ex | ⊢ ( ( 𝐽  ∈  Top  ∧  𝐴  ⊆  𝑋 )  →  ( ( 𝐴  ∩  ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 )  ∖  ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) )  =  ∅  →  ( ( int ‘ 𝐽 ) ‘ 𝐴 )  =  𝐴 ) ) | 
						
							| 21 | 6 20 | impbid | ⊢ ( ( 𝐽  ∈  Top  ∧  𝐴  ⊆  𝑋 )  →  ( ( ( int ‘ 𝐽 ) ‘ 𝐴 )  =  𝐴  ↔  ( 𝐴  ∩  ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 )  ∖  ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) )  =  ∅ ) ) | 
						
							| 22 | 1 | isopn3 | ⊢ ( ( 𝐽  ∈  Top  ∧  𝐴  ⊆  𝑋 )  →  ( 𝐴  ∈  𝐽  ↔  ( ( int ‘ 𝐽 ) ‘ 𝐴 )  =  𝐴 ) ) | 
						
							| 23 | 1 | topbnd | ⊢ ( ( 𝐽  ∈  Top  ∧  𝐴  ⊆  𝑋 )  →  ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 )  ∩  ( ( cls ‘ 𝐽 ) ‘ ( 𝑋  ∖  𝐴 ) ) )  =  ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 )  ∖  ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ) | 
						
							| 24 | 23 | ineq2d | ⊢ ( ( 𝐽  ∈  Top  ∧  𝐴  ⊆  𝑋 )  →  ( 𝐴  ∩  ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 )  ∩  ( ( cls ‘ 𝐽 ) ‘ ( 𝑋  ∖  𝐴 ) ) ) )  =  ( 𝐴  ∩  ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 )  ∖  ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ) ) | 
						
							| 25 | 24 | eqeq1d | ⊢ ( ( 𝐽  ∈  Top  ∧  𝐴  ⊆  𝑋 )  →  ( ( 𝐴  ∩  ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 )  ∩  ( ( cls ‘ 𝐽 ) ‘ ( 𝑋  ∖  𝐴 ) ) ) )  =  ∅  ↔  ( 𝐴  ∩  ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 )  ∖  ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) )  =  ∅ ) ) | 
						
							| 26 | 21 22 25 | 3bitr4d | ⊢ ( ( 𝐽  ∈  Top  ∧  𝐴  ⊆  𝑋 )  →  ( 𝐴  ∈  𝐽  ↔  ( 𝐴  ∩  ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 )  ∩  ( ( cls ‘ 𝐽 ) ‘ ( 𝑋  ∖  𝐴 ) ) ) )  =  ∅ ) ) |