| Step | Hyp | Ref | Expression | 
						
							| 1 |  | topbnd.1 | ⊢ 𝑋  =  ∪  𝐽 | 
						
							| 2 | 1 | clsdif | ⊢ ( ( 𝐽  ∈  Top  ∧  𝐴  ⊆  𝑋 )  →  ( ( cls ‘ 𝐽 ) ‘ ( 𝑋  ∖  𝐴 ) )  =  ( 𝑋  ∖  ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ) | 
						
							| 3 | 2 | ineq2d | ⊢ ( ( 𝐽  ∈  Top  ∧  𝐴  ⊆  𝑋 )  →  ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 )  ∩  ( ( cls ‘ 𝐽 ) ‘ ( 𝑋  ∖  𝐴 ) ) )  =  ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 )  ∩  ( 𝑋  ∖  ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ) ) | 
						
							| 4 |  | indif2 | ⊢ ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 )  ∩  ( 𝑋  ∖  ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) )  =  ( ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 )  ∩  𝑋 )  ∖  ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) | 
						
							| 5 | 3 4 | eqtrdi | ⊢ ( ( 𝐽  ∈  Top  ∧  𝐴  ⊆  𝑋 )  →  ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 )  ∩  ( ( cls ‘ 𝐽 ) ‘ ( 𝑋  ∖  𝐴 ) ) )  =  ( ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 )  ∩  𝑋 )  ∖  ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ) | 
						
							| 6 | 1 | clsss3 | ⊢ ( ( 𝐽  ∈  Top  ∧  𝐴  ⊆  𝑋 )  →  ( ( cls ‘ 𝐽 ) ‘ 𝐴 )  ⊆  𝑋 ) | 
						
							| 7 |  | dfss2 | ⊢ ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 )  ⊆  𝑋  ↔  ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 )  ∩  𝑋 )  =  ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) | 
						
							| 8 | 6 7 | sylib | ⊢ ( ( 𝐽  ∈  Top  ∧  𝐴  ⊆  𝑋 )  →  ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 )  ∩  𝑋 )  =  ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) | 
						
							| 9 | 8 | difeq1d | ⊢ ( ( 𝐽  ∈  Top  ∧  𝐴  ⊆  𝑋 )  →  ( ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 )  ∩  𝑋 )  ∖  ( ( int ‘ 𝐽 ) ‘ 𝐴 ) )  =  ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 )  ∖  ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ) | 
						
							| 10 | 5 9 | eqtrd | ⊢ ( ( 𝐽  ∈  Top  ∧  𝐴  ⊆  𝑋 )  →  ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 )  ∩  ( ( cls ‘ 𝐽 ) ‘ ( 𝑋  ∖  𝐴 ) ) )  =  ( ( ( cls ‘ 𝐽 ) ‘ 𝐴 )  ∖  ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ) |