| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tsmspropd.f |
|- ( ph -> F e. V ) |
| 2 |
|
tsmspropd.g |
|- ( ph -> G e. W ) |
| 3 |
|
tsmspropd.h |
|- ( ph -> H e. X ) |
| 4 |
|
tsmspropd.b |
|- ( ph -> ( Base ` G ) = ( Base ` H ) ) |
| 5 |
|
tsmspropd.p |
|- ( ph -> ( +g ` G ) = ( +g ` H ) ) |
| 6 |
|
tsmspropd.j |
|- ( ph -> ( TopOpen ` G ) = ( TopOpen ` H ) ) |
| 7 |
6
|
oveq1d |
|- ( ph -> ( ( TopOpen ` G ) fLimf ( ( ~P dom F i^i Fin ) filGen ran ( z e. ( ~P dom F i^i Fin ) |-> { y e. ( ~P dom F i^i Fin ) | z C_ y } ) ) ) = ( ( TopOpen ` H ) fLimf ( ( ~P dom F i^i Fin ) filGen ran ( z e. ( ~P dom F i^i Fin ) |-> { y e. ( ~P dom F i^i Fin ) | z C_ y } ) ) ) ) |
| 8 |
1
|
resexd |
|- ( ph -> ( F |` y ) e. _V ) |
| 9 |
8 2 3 4 5
|
gsumpropd |
|- ( ph -> ( G gsum ( F |` y ) ) = ( H gsum ( F |` y ) ) ) |
| 10 |
9
|
mpteq2dv |
|- ( ph -> ( y e. ( ~P dom F i^i Fin ) |-> ( G gsum ( F |` y ) ) ) = ( y e. ( ~P dom F i^i Fin ) |-> ( H gsum ( F |` y ) ) ) ) |
| 11 |
7 10
|
fveq12d |
|- ( ph -> ( ( ( TopOpen ` G ) fLimf ( ( ~P dom F i^i Fin ) filGen ran ( z e. ( ~P dom F i^i Fin ) |-> { y e. ( ~P dom F i^i Fin ) | z C_ y } ) ) ) ` ( y e. ( ~P dom F i^i Fin ) |-> ( G gsum ( F |` y ) ) ) ) = ( ( ( TopOpen ` H ) fLimf ( ( ~P dom F i^i Fin ) filGen ran ( z e. ( ~P dom F i^i Fin ) |-> { y e. ( ~P dom F i^i Fin ) | z C_ y } ) ) ) ` ( y e. ( ~P dom F i^i Fin ) |-> ( H gsum ( F |` y ) ) ) ) ) |
| 12 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
| 13 |
|
eqid |
|- ( TopOpen ` G ) = ( TopOpen ` G ) |
| 14 |
|
eqid |
|- ( ~P dom F i^i Fin ) = ( ~P dom F i^i Fin ) |
| 15 |
|
eqid |
|- ran ( z e. ( ~P dom F i^i Fin ) |-> { y e. ( ~P dom F i^i Fin ) | z C_ y } ) = ran ( z e. ( ~P dom F i^i Fin ) |-> { y e. ( ~P dom F i^i Fin ) | z C_ y } ) |
| 16 |
|
eqidd |
|- ( ph -> dom F = dom F ) |
| 17 |
12 13 14 15 2 1 16
|
tsmsval2 |
|- ( ph -> ( G tsums F ) = ( ( ( TopOpen ` G ) fLimf ( ( ~P dom F i^i Fin ) filGen ran ( z e. ( ~P dom F i^i Fin ) |-> { y e. ( ~P dom F i^i Fin ) | z C_ y } ) ) ) ` ( y e. ( ~P dom F i^i Fin ) |-> ( G gsum ( F |` y ) ) ) ) ) |
| 18 |
|
eqid |
|- ( Base ` H ) = ( Base ` H ) |
| 19 |
|
eqid |
|- ( TopOpen ` H ) = ( TopOpen ` H ) |
| 20 |
18 19 14 15 3 1 16
|
tsmsval2 |
|- ( ph -> ( H tsums F ) = ( ( ( TopOpen ` H ) fLimf ( ( ~P dom F i^i Fin ) filGen ran ( z e. ( ~P dom F i^i Fin ) |-> { y e. ( ~P dom F i^i Fin ) | z C_ y } ) ) ) ` ( y e. ( ~P dom F i^i Fin ) |-> ( H gsum ( F |` y ) ) ) ) ) |
| 21 |
11 17 20
|
3eqtr4d |
|- ( ph -> ( G tsums F ) = ( H tsums F ) ) |