Step |
Hyp |
Ref |
Expression |
1 |
|
tsmspropd.f |
|- ( ph -> F e. V ) |
2 |
|
tsmspropd.g |
|- ( ph -> G e. W ) |
3 |
|
tsmspropd.h |
|- ( ph -> H e. X ) |
4 |
|
tsmspropd.b |
|- ( ph -> ( Base ` G ) = ( Base ` H ) ) |
5 |
|
tsmspropd.p |
|- ( ph -> ( +g ` G ) = ( +g ` H ) ) |
6 |
|
tsmspropd.j |
|- ( ph -> ( TopOpen ` G ) = ( TopOpen ` H ) ) |
7 |
6
|
oveq1d |
|- ( ph -> ( ( TopOpen ` G ) fLimf ( ( ~P dom F i^i Fin ) filGen ran ( z e. ( ~P dom F i^i Fin ) |-> { y e. ( ~P dom F i^i Fin ) | z C_ y } ) ) ) = ( ( TopOpen ` H ) fLimf ( ( ~P dom F i^i Fin ) filGen ran ( z e. ( ~P dom F i^i Fin ) |-> { y e. ( ~P dom F i^i Fin ) | z C_ y } ) ) ) ) |
8 |
1
|
resexd |
|- ( ph -> ( F |` y ) e. _V ) |
9 |
8 2 3 4 5
|
gsumpropd |
|- ( ph -> ( G gsum ( F |` y ) ) = ( H gsum ( F |` y ) ) ) |
10 |
9
|
mpteq2dv |
|- ( ph -> ( y e. ( ~P dom F i^i Fin ) |-> ( G gsum ( F |` y ) ) ) = ( y e. ( ~P dom F i^i Fin ) |-> ( H gsum ( F |` y ) ) ) ) |
11 |
7 10
|
fveq12d |
|- ( ph -> ( ( ( TopOpen ` G ) fLimf ( ( ~P dom F i^i Fin ) filGen ran ( z e. ( ~P dom F i^i Fin ) |-> { y e. ( ~P dom F i^i Fin ) | z C_ y } ) ) ) ` ( y e. ( ~P dom F i^i Fin ) |-> ( G gsum ( F |` y ) ) ) ) = ( ( ( TopOpen ` H ) fLimf ( ( ~P dom F i^i Fin ) filGen ran ( z e. ( ~P dom F i^i Fin ) |-> { y e. ( ~P dom F i^i Fin ) | z C_ y } ) ) ) ` ( y e. ( ~P dom F i^i Fin ) |-> ( H gsum ( F |` y ) ) ) ) ) |
12 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
13 |
|
eqid |
|- ( TopOpen ` G ) = ( TopOpen ` G ) |
14 |
|
eqid |
|- ( ~P dom F i^i Fin ) = ( ~P dom F i^i Fin ) |
15 |
|
eqid |
|- ran ( z e. ( ~P dom F i^i Fin ) |-> { y e. ( ~P dom F i^i Fin ) | z C_ y } ) = ran ( z e. ( ~P dom F i^i Fin ) |-> { y e. ( ~P dom F i^i Fin ) | z C_ y } ) |
16 |
|
eqidd |
|- ( ph -> dom F = dom F ) |
17 |
12 13 14 15 2 1 16
|
tsmsval2 |
|- ( ph -> ( G tsums F ) = ( ( ( TopOpen ` G ) fLimf ( ( ~P dom F i^i Fin ) filGen ran ( z e. ( ~P dom F i^i Fin ) |-> { y e. ( ~P dom F i^i Fin ) | z C_ y } ) ) ) ` ( y e. ( ~P dom F i^i Fin ) |-> ( G gsum ( F |` y ) ) ) ) ) |
18 |
|
eqid |
|- ( Base ` H ) = ( Base ` H ) |
19 |
|
eqid |
|- ( TopOpen ` H ) = ( TopOpen ` H ) |
20 |
18 19 14 15 3 1 16
|
tsmsval2 |
|- ( ph -> ( H tsums F ) = ( ( ( TopOpen ` H ) fLimf ( ( ~P dom F i^i Fin ) filGen ran ( z e. ( ~P dom F i^i Fin ) |-> { y e. ( ~P dom F i^i Fin ) | z C_ y } ) ) ) ` ( y e. ( ~P dom F i^i Fin ) |-> ( H gsum ( F |` y ) ) ) ) ) |
21 |
11 17 20
|
3eqtr4d |
|- ( ph -> ( G tsums F ) = ( H tsums F ) ) |