| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tsmspropd.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) |
| 2 |
|
tsmspropd.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝑊 ) |
| 3 |
|
tsmspropd.h |
⊢ ( 𝜑 → 𝐻 ∈ 𝑋 ) |
| 4 |
|
tsmspropd.b |
⊢ ( 𝜑 → ( Base ‘ 𝐺 ) = ( Base ‘ 𝐻 ) ) |
| 5 |
|
tsmspropd.p |
⊢ ( 𝜑 → ( +g ‘ 𝐺 ) = ( +g ‘ 𝐻 ) ) |
| 6 |
|
tsmspropd.j |
⊢ ( 𝜑 → ( TopOpen ‘ 𝐺 ) = ( TopOpen ‘ 𝐻 ) ) |
| 7 |
6
|
oveq1d |
⊢ ( 𝜑 → ( ( TopOpen ‘ 𝐺 ) fLimf ( ( 𝒫 dom 𝐹 ∩ Fin ) filGen ran ( 𝑧 ∈ ( 𝒫 dom 𝐹 ∩ Fin ) ↦ { 𝑦 ∈ ( 𝒫 dom 𝐹 ∩ Fin ) ∣ 𝑧 ⊆ 𝑦 } ) ) ) = ( ( TopOpen ‘ 𝐻 ) fLimf ( ( 𝒫 dom 𝐹 ∩ Fin ) filGen ran ( 𝑧 ∈ ( 𝒫 dom 𝐹 ∩ Fin ) ↦ { 𝑦 ∈ ( 𝒫 dom 𝐹 ∩ Fin ) ∣ 𝑧 ⊆ 𝑦 } ) ) ) ) |
| 8 |
1
|
resexd |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝑦 ) ∈ V ) |
| 9 |
8 2 3 4 5
|
gsumpropd |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) = ( 𝐻 Σg ( 𝐹 ↾ 𝑦 ) ) ) |
| 10 |
9
|
mpteq2dv |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝒫 dom 𝐹 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) = ( 𝑦 ∈ ( 𝒫 dom 𝐹 ∩ Fin ) ↦ ( 𝐻 Σg ( 𝐹 ↾ 𝑦 ) ) ) ) |
| 11 |
7 10
|
fveq12d |
⊢ ( 𝜑 → ( ( ( TopOpen ‘ 𝐺 ) fLimf ( ( 𝒫 dom 𝐹 ∩ Fin ) filGen ran ( 𝑧 ∈ ( 𝒫 dom 𝐹 ∩ Fin ) ↦ { 𝑦 ∈ ( 𝒫 dom 𝐹 ∩ Fin ) ∣ 𝑧 ⊆ 𝑦 } ) ) ) ‘ ( 𝑦 ∈ ( 𝒫 dom 𝐹 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) ) = ( ( ( TopOpen ‘ 𝐻 ) fLimf ( ( 𝒫 dom 𝐹 ∩ Fin ) filGen ran ( 𝑧 ∈ ( 𝒫 dom 𝐹 ∩ Fin ) ↦ { 𝑦 ∈ ( 𝒫 dom 𝐹 ∩ Fin ) ∣ 𝑧 ⊆ 𝑦 } ) ) ) ‘ ( 𝑦 ∈ ( 𝒫 dom 𝐹 ∩ Fin ) ↦ ( 𝐻 Σg ( 𝐹 ↾ 𝑦 ) ) ) ) ) |
| 12 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
| 13 |
|
eqid |
⊢ ( TopOpen ‘ 𝐺 ) = ( TopOpen ‘ 𝐺 ) |
| 14 |
|
eqid |
⊢ ( 𝒫 dom 𝐹 ∩ Fin ) = ( 𝒫 dom 𝐹 ∩ Fin ) |
| 15 |
|
eqid |
⊢ ran ( 𝑧 ∈ ( 𝒫 dom 𝐹 ∩ Fin ) ↦ { 𝑦 ∈ ( 𝒫 dom 𝐹 ∩ Fin ) ∣ 𝑧 ⊆ 𝑦 } ) = ran ( 𝑧 ∈ ( 𝒫 dom 𝐹 ∩ Fin ) ↦ { 𝑦 ∈ ( 𝒫 dom 𝐹 ∩ Fin ) ∣ 𝑧 ⊆ 𝑦 } ) |
| 16 |
|
eqidd |
⊢ ( 𝜑 → dom 𝐹 = dom 𝐹 ) |
| 17 |
12 13 14 15 2 1 16
|
tsmsval2 |
⊢ ( 𝜑 → ( 𝐺 tsums 𝐹 ) = ( ( ( TopOpen ‘ 𝐺 ) fLimf ( ( 𝒫 dom 𝐹 ∩ Fin ) filGen ran ( 𝑧 ∈ ( 𝒫 dom 𝐹 ∩ Fin ) ↦ { 𝑦 ∈ ( 𝒫 dom 𝐹 ∩ Fin ) ∣ 𝑧 ⊆ 𝑦 } ) ) ) ‘ ( 𝑦 ∈ ( 𝒫 dom 𝐹 ∩ Fin ) ↦ ( 𝐺 Σg ( 𝐹 ↾ 𝑦 ) ) ) ) ) |
| 18 |
|
eqid |
⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) |
| 19 |
|
eqid |
⊢ ( TopOpen ‘ 𝐻 ) = ( TopOpen ‘ 𝐻 ) |
| 20 |
18 19 14 15 3 1 16
|
tsmsval2 |
⊢ ( 𝜑 → ( 𝐻 tsums 𝐹 ) = ( ( ( TopOpen ‘ 𝐻 ) fLimf ( ( 𝒫 dom 𝐹 ∩ Fin ) filGen ran ( 𝑧 ∈ ( 𝒫 dom 𝐹 ∩ Fin ) ↦ { 𝑦 ∈ ( 𝒫 dom 𝐹 ∩ Fin ) ∣ 𝑧 ⊆ 𝑦 } ) ) ) ‘ ( 𝑦 ∈ ( 𝒫 dom 𝐹 ∩ Fin ) ↦ ( 𝐻 Σg ( 𝐹 ↾ 𝑦 ) ) ) ) ) |
| 21 |
11 17 20
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝐺 tsums 𝐹 ) = ( 𝐻 tsums 𝐹 ) ) |