Metamath Proof Explorer


Theorem tsmspropd

Description: The group sum depends only on the base set, additive operation, and topology components. Note that for entirely unrestricted functions, there can be dependency on out-of-domain values of the operation, so this is somewhat weaker than mndpropd etc. (Contributed by Mario Carneiro, 18-Sep-2015)

Ref Expression
Hypotheses tsmspropd.f φFV
tsmspropd.g φGW
tsmspropd.h φHX
tsmspropd.b φBaseG=BaseH
tsmspropd.p φ+G=+H
tsmspropd.j φTopOpenG=TopOpenH
Assertion tsmspropd φGtsumsF=HtsumsF

Proof

Step Hyp Ref Expression
1 tsmspropd.f φFV
2 tsmspropd.g φGW
3 tsmspropd.h φHX
4 tsmspropd.b φBaseG=BaseH
5 tsmspropd.p φ+G=+H
6 tsmspropd.j φTopOpenG=TopOpenH
7 6 oveq1d φTopOpenGfLimf𝒫domFFinfilGenranz𝒫domFFiny𝒫domFFin|zy=TopOpenHfLimf𝒫domFFinfilGenranz𝒫domFFiny𝒫domFFin|zy
8 1 resexd φFyV
9 8 2 3 4 5 gsumpropd φGFy=HFy
10 9 mpteq2dv φy𝒫domFFinGFy=y𝒫domFFinHFy
11 7 10 fveq12d φTopOpenGfLimf𝒫domFFinfilGenranz𝒫domFFiny𝒫domFFin|zyy𝒫domFFinGFy=TopOpenHfLimf𝒫domFFinfilGenranz𝒫domFFiny𝒫domFFin|zyy𝒫domFFinHFy
12 eqid BaseG=BaseG
13 eqid TopOpenG=TopOpenG
14 eqid 𝒫domFFin=𝒫domFFin
15 eqid ranz𝒫domFFiny𝒫domFFin|zy=ranz𝒫domFFiny𝒫domFFin|zy
16 eqidd φdomF=domF
17 12 13 14 15 2 1 16 tsmsval2 φGtsumsF=TopOpenGfLimf𝒫domFFinfilGenranz𝒫domFFiny𝒫domFFin|zyy𝒫domFFinGFy
18 eqid BaseH=BaseH
19 eqid TopOpenH=TopOpenH
20 18 19 14 15 3 1 16 tsmsval2 φHtsumsF=TopOpenHfLimf𝒫domFFinfilGenranz𝒫domFFiny𝒫domFFin|zyy𝒫domFFinHFy
21 11 17 20 3eqtr4d φGtsumsF=HtsumsF