Metamath Proof Explorer


Theorem tsmsval2

Description: Definition of the topological group sum(s) of a collection F ( x ) of values in the group with index set A . (Contributed by Mario Carneiro, 2-Sep-2015)

Ref Expression
Hypotheses tsmsval.b 𝐵 = ( Base ‘ 𝐺 )
tsmsval.j 𝐽 = ( TopOpen ‘ 𝐺 )
tsmsval.s 𝑆 = ( 𝒫 𝐴 ∩ Fin )
tsmsval.l 𝐿 = ran ( 𝑧𝑆 ↦ { 𝑦𝑆𝑧𝑦 } )
tsmsval.g ( 𝜑𝐺𝑉 )
tsmsval2.f ( 𝜑𝐹𝑊 )
tsmsval2.a ( 𝜑 → dom 𝐹 = 𝐴 )
Assertion tsmsval2 ( 𝜑 → ( 𝐺 tsums 𝐹 ) = ( ( 𝐽 fLimf ( 𝑆 filGen 𝐿 ) ) ‘ ( 𝑦𝑆 ↦ ( 𝐺 Σg ( 𝐹𝑦 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 tsmsval.b 𝐵 = ( Base ‘ 𝐺 )
2 tsmsval.j 𝐽 = ( TopOpen ‘ 𝐺 )
3 tsmsval.s 𝑆 = ( 𝒫 𝐴 ∩ Fin )
4 tsmsval.l 𝐿 = ran ( 𝑧𝑆 ↦ { 𝑦𝑆𝑧𝑦 } )
5 tsmsval.g ( 𝜑𝐺𝑉 )
6 tsmsval2.f ( 𝜑𝐹𝑊 )
7 tsmsval2.a ( 𝜑 → dom 𝐹 = 𝐴 )
8 df-tsms tsums = ( 𝑤 ∈ V , 𝑓 ∈ V ↦ ( 𝒫 dom 𝑓 ∩ Fin ) / 𝑠 ( ( ( TopOpen ‘ 𝑤 ) fLimf ( 𝑠 filGen ran ( 𝑧𝑠 ↦ { 𝑦𝑠𝑧𝑦 } ) ) ) ‘ ( 𝑦𝑠 ↦ ( 𝑤 Σg ( 𝑓𝑦 ) ) ) ) )
9 8 a1i ( 𝜑 → tsums = ( 𝑤 ∈ V , 𝑓 ∈ V ↦ ( 𝒫 dom 𝑓 ∩ Fin ) / 𝑠 ( ( ( TopOpen ‘ 𝑤 ) fLimf ( 𝑠 filGen ran ( 𝑧𝑠 ↦ { 𝑦𝑠𝑧𝑦 } ) ) ) ‘ ( 𝑦𝑠 ↦ ( 𝑤 Σg ( 𝑓𝑦 ) ) ) ) ) )
10 vex 𝑓 ∈ V
11 10 dmex dom 𝑓 ∈ V
12 11 pwex 𝒫 dom 𝑓 ∈ V
13 12 inex1 ( 𝒫 dom 𝑓 ∩ Fin ) ∈ V
14 13 a1i ( ( 𝜑 ∧ ( 𝑤 = 𝐺𝑓 = 𝐹 ) ) → ( 𝒫 dom 𝑓 ∩ Fin ) ∈ V )
15 simplrl ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺𝑓 = 𝐹 ) ) ∧ 𝑠 = ( 𝒫 dom 𝑓 ∩ Fin ) ) → 𝑤 = 𝐺 )
16 15 fveq2d ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺𝑓 = 𝐹 ) ) ∧ 𝑠 = ( 𝒫 dom 𝑓 ∩ Fin ) ) → ( TopOpen ‘ 𝑤 ) = ( TopOpen ‘ 𝐺 ) )
17 16 2 eqtr4di ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺𝑓 = 𝐹 ) ) ∧ 𝑠 = ( 𝒫 dom 𝑓 ∩ Fin ) ) → ( TopOpen ‘ 𝑤 ) = 𝐽 )
18 id ( 𝑠 = ( 𝒫 dom 𝑓 ∩ Fin ) → 𝑠 = ( 𝒫 dom 𝑓 ∩ Fin ) )
19 simprr ( ( 𝜑 ∧ ( 𝑤 = 𝐺𝑓 = 𝐹 ) ) → 𝑓 = 𝐹 )
20 19 dmeqd ( ( 𝜑 ∧ ( 𝑤 = 𝐺𝑓 = 𝐹 ) ) → dom 𝑓 = dom 𝐹 )
21 7 adantr ( ( 𝜑 ∧ ( 𝑤 = 𝐺𝑓 = 𝐹 ) ) → dom 𝐹 = 𝐴 )
22 20 21 eqtrd ( ( 𝜑 ∧ ( 𝑤 = 𝐺𝑓 = 𝐹 ) ) → dom 𝑓 = 𝐴 )
23 22 pweqd ( ( 𝜑 ∧ ( 𝑤 = 𝐺𝑓 = 𝐹 ) ) → 𝒫 dom 𝑓 = 𝒫 𝐴 )
24 23 ineq1d ( ( 𝜑 ∧ ( 𝑤 = 𝐺𝑓 = 𝐹 ) ) → ( 𝒫 dom 𝑓 ∩ Fin ) = ( 𝒫 𝐴 ∩ Fin ) )
25 24 3 eqtr4di ( ( 𝜑 ∧ ( 𝑤 = 𝐺𝑓 = 𝐹 ) ) → ( 𝒫 dom 𝑓 ∩ Fin ) = 𝑆 )
26 18 25 sylan9eqr ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺𝑓 = 𝐹 ) ) ∧ 𝑠 = ( 𝒫 dom 𝑓 ∩ Fin ) ) → 𝑠 = 𝑆 )
27 26 rabeqdv ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺𝑓 = 𝐹 ) ) ∧ 𝑠 = ( 𝒫 dom 𝑓 ∩ Fin ) ) → { 𝑦𝑠𝑧𝑦 } = { 𝑦𝑆𝑧𝑦 } )
28 26 27 mpteq12dv ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺𝑓 = 𝐹 ) ) ∧ 𝑠 = ( 𝒫 dom 𝑓 ∩ Fin ) ) → ( 𝑧𝑠 ↦ { 𝑦𝑠𝑧𝑦 } ) = ( 𝑧𝑆 ↦ { 𝑦𝑆𝑧𝑦 } ) )
29 28 rneqd ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺𝑓 = 𝐹 ) ) ∧ 𝑠 = ( 𝒫 dom 𝑓 ∩ Fin ) ) → ran ( 𝑧𝑠 ↦ { 𝑦𝑠𝑧𝑦 } ) = ran ( 𝑧𝑆 ↦ { 𝑦𝑆𝑧𝑦 } ) )
30 29 4 eqtr4di ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺𝑓 = 𝐹 ) ) ∧ 𝑠 = ( 𝒫 dom 𝑓 ∩ Fin ) ) → ran ( 𝑧𝑠 ↦ { 𝑦𝑠𝑧𝑦 } ) = 𝐿 )
31 26 30 oveq12d ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺𝑓 = 𝐹 ) ) ∧ 𝑠 = ( 𝒫 dom 𝑓 ∩ Fin ) ) → ( 𝑠 filGen ran ( 𝑧𝑠 ↦ { 𝑦𝑠𝑧𝑦 } ) ) = ( 𝑆 filGen 𝐿 ) )
32 17 31 oveq12d ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺𝑓 = 𝐹 ) ) ∧ 𝑠 = ( 𝒫 dom 𝑓 ∩ Fin ) ) → ( ( TopOpen ‘ 𝑤 ) fLimf ( 𝑠 filGen ran ( 𝑧𝑠 ↦ { 𝑦𝑠𝑧𝑦 } ) ) ) = ( 𝐽 fLimf ( 𝑆 filGen 𝐿 ) ) )
33 simplrr ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺𝑓 = 𝐹 ) ) ∧ 𝑠 = ( 𝒫 dom 𝑓 ∩ Fin ) ) → 𝑓 = 𝐹 )
34 33 reseq1d ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺𝑓 = 𝐹 ) ) ∧ 𝑠 = ( 𝒫 dom 𝑓 ∩ Fin ) ) → ( 𝑓𝑦 ) = ( 𝐹𝑦 ) )
35 15 34 oveq12d ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺𝑓 = 𝐹 ) ) ∧ 𝑠 = ( 𝒫 dom 𝑓 ∩ Fin ) ) → ( 𝑤 Σg ( 𝑓𝑦 ) ) = ( 𝐺 Σg ( 𝐹𝑦 ) ) )
36 26 35 mpteq12dv ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺𝑓 = 𝐹 ) ) ∧ 𝑠 = ( 𝒫 dom 𝑓 ∩ Fin ) ) → ( 𝑦𝑠 ↦ ( 𝑤 Σg ( 𝑓𝑦 ) ) ) = ( 𝑦𝑆 ↦ ( 𝐺 Σg ( 𝐹𝑦 ) ) ) )
37 32 36 fveq12d ( ( ( 𝜑 ∧ ( 𝑤 = 𝐺𝑓 = 𝐹 ) ) ∧ 𝑠 = ( 𝒫 dom 𝑓 ∩ Fin ) ) → ( ( ( TopOpen ‘ 𝑤 ) fLimf ( 𝑠 filGen ran ( 𝑧𝑠 ↦ { 𝑦𝑠𝑧𝑦 } ) ) ) ‘ ( 𝑦𝑠 ↦ ( 𝑤 Σg ( 𝑓𝑦 ) ) ) ) = ( ( 𝐽 fLimf ( 𝑆 filGen 𝐿 ) ) ‘ ( 𝑦𝑆 ↦ ( 𝐺 Σg ( 𝐹𝑦 ) ) ) ) )
38 14 37 csbied ( ( 𝜑 ∧ ( 𝑤 = 𝐺𝑓 = 𝐹 ) ) → ( 𝒫 dom 𝑓 ∩ Fin ) / 𝑠 ( ( ( TopOpen ‘ 𝑤 ) fLimf ( 𝑠 filGen ran ( 𝑧𝑠 ↦ { 𝑦𝑠𝑧𝑦 } ) ) ) ‘ ( 𝑦𝑠 ↦ ( 𝑤 Σg ( 𝑓𝑦 ) ) ) ) = ( ( 𝐽 fLimf ( 𝑆 filGen 𝐿 ) ) ‘ ( 𝑦𝑆 ↦ ( 𝐺 Σg ( 𝐹𝑦 ) ) ) ) )
39 5 elexd ( 𝜑𝐺 ∈ V )
40 6 elexd ( 𝜑𝐹 ∈ V )
41 fvexd ( 𝜑 → ( ( 𝐽 fLimf ( 𝑆 filGen 𝐿 ) ) ‘ ( 𝑦𝑆 ↦ ( 𝐺 Σg ( 𝐹𝑦 ) ) ) ) ∈ V )
42 9 38 39 40 41 ovmpod ( 𝜑 → ( 𝐺 tsums 𝐹 ) = ( ( 𝐽 fLimf ( 𝑆 filGen 𝐿 ) ) ‘ ( 𝑦𝑆 ↦ ( 𝐺 Σg ( 𝐹𝑦 ) ) ) ) )