Metamath Proof Explorer


Theorem tz6.12-2-afv2

Description: Function value when F is (locally) not a function. Theorem 6.12(2) of TakeutiZaring p. 27, analogous to tz6.12-2 . (Contributed by AV, 5-Sep-2022)

Ref Expression
Assertion tz6.12-2-afv2
|- ( -. E! x A F x -> ( F '''' A ) e/ ran F )

Proof

Step Hyp Ref Expression
1 dfdfat2
 |-  ( F defAt A <-> ( A e. dom F /\ E! x A F x ) )
2 1 simprbi
 |-  ( F defAt A -> E! x A F x )
3 ndfatafv2nrn
 |-  ( -. F defAt A -> ( F '''' A ) e/ ran F )
4 2 3 nsyl5
 |-  ( -. E! x A F x -> ( F '''' A ) e/ ran F )