Metamath Proof Explorer


Theorem afv2eu

Description: The value of a function at a unique point, analogous to fveu . (Contributed by AV, 5-Sep-2022)

Ref Expression
Assertion afv2eu
|- ( E! x A F x -> ( F '''' A ) = U. { x | A F x } )

Proof

Step Hyp Ref Expression
1 eubrv
 |-  ( E! x A F x -> A e. _V )
2 euex
 |-  ( E! x A F x -> E. x A F x )
3 eldmg
 |-  ( A e. _V -> ( A e. dom F <-> E. x A F x ) )
4 2 3 syl5ibrcom
 |-  ( E! x A F x -> ( A e. _V -> A e. dom F ) )
5 4 impcom
 |-  ( ( A e. _V /\ E! x A F x ) -> A e. dom F )
6 dfdfat2
 |-  ( F defAt A <-> ( A e. dom F /\ E! x A F x ) )
7 dfatafv2iota
 |-  ( F defAt A -> ( F '''' A ) = ( iota x A F x ) )
8 iotauni
 |-  ( E! x A F x -> ( iota x A F x ) = U. { x | A F x } )
9 7 8 sylan9eq
 |-  ( ( F defAt A /\ E! x A F x ) -> ( F '''' A ) = U. { x | A F x } )
10 9 ex
 |-  ( F defAt A -> ( E! x A F x -> ( F '''' A ) = U. { x | A F x } ) )
11 6 10 sylbir
 |-  ( ( A e. dom F /\ E! x A F x ) -> ( E! x A F x -> ( F '''' A ) = U. { x | A F x } ) )
12 11 expcom
 |-  ( E! x A F x -> ( A e. dom F -> ( E! x A F x -> ( F '''' A ) = U. { x | A F x } ) ) )
13 12 pm2.43a
 |-  ( E! x A F x -> ( A e. dom F -> ( F '''' A ) = U. { x | A F x } ) )
14 13 adantl
 |-  ( ( A e. _V /\ E! x A F x ) -> ( A e. dom F -> ( F '''' A ) = U. { x | A F x } ) )
15 5 14 mpd
 |-  ( ( A e. _V /\ E! x A F x ) -> ( F '''' A ) = U. { x | A F x } )
16 1 15 mpancom
 |-  ( E! x A F x -> ( F '''' A ) = U. { x | A F x } )