Step |
Hyp |
Ref |
Expression |
1 |
|
eubrv |
|- ( E! x A F x -> A e. _V ) |
2 |
|
euex |
|- ( E! x A F x -> E. x A F x ) |
3 |
|
eldmg |
|- ( A e. _V -> ( A e. dom F <-> E. x A F x ) ) |
4 |
2 3
|
syl5ibrcom |
|- ( E! x A F x -> ( A e. _V -> A e. dom F ) ) |
5 |
4
|
impcom |
|- ( ( A e. _V /\ E! x A F x ) -> A e. dom F ) |
6 |
|
dfdfat2 |
|- ( F defAt A <-> ( A e. dom F /\ E! x A F x ) ) |
7 |
|
dfatafv2iota |
|- ( F defAt A -> ( F '''' A ) = ( iota x A F x ) ) |
8 |
|
iotauni |
|- ( E! x A F x -> ( iota x A F x ) = U. { x | A F x } ) |
9 |
7 8
|
sylan9eq |
|- ( ( F defAt A /\ E! x A F x ) -> ( F '''' A ) = U. { x | A F x } ) |
10 |
9
|
ex |
|- ( F defAt A -> ( E! x A F x -> ( F '''' A ) = U. { x | A F x } ) ) |
11 |
6 10
|
sylbir |
|- ( ( A e. dom F /\ E! x A F x ) -> ( E! x A F x -> ( F '''' A ) = U. { x | A F x } ) ) |
12 |
11
|
expcom |
|- ( E! x A F x -> ( A e. dom F -> ( E! x A F x -> ( F '''' A ) = U. { x | A F x } ) ) ) |
13 |
12
|
pm2.43a |
|- ( E! x A F x -> ( A e. dom F -> ( F '''' A ) = U. { x | A F x } ) ) |
14 |
13
|
adantl |
|- ( ( A e. _V /\ E! x A F x ) -> ( A e. dom F -> ( F '''' A ) = U. { x | A F x } ) ) |
15 |
5 14
|
mpd |
|- ( ( A e. _V /\ E! x A F x ) -> ( F '''' A ) = U. { x | A F x } ) |
16 |
1 15
|
mpancom |
|- ( E! x A F x -> ( F '''' A ) = U. { x | A F x } ) |