| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eubrv |  |-  ( E! x A F x -> A e. _V ) | 
						
							| 2 |  | euex |  |-  ( E! x A F x -> E. x A F x ) | 
						
							| 3 |  | eldmg |  |-  ( A e. _V -> ( A e. dom F <-> E. x A F x ) ) | 
						
							| 4 | 2 3 | syl5ibrcom |  |-  ( E! x A F x -> ( A e. _V -> A e. dom F ) ) | 
						
							| 5 | 4 | impcom |  |-  ( ( A e. _V /\ E! x A F x ) -> A e. dom F ) | 
						
							| 6 |  | dfdfat2 |  |-  ( F defAt A <-> ( A e. dom F /\ E! x A F x ) ) | 
						
							| 7 |  | dfatafv2iota |  |-  ( F defAt A -> ( F '''' A ) = ( iota x A F x ) ) | 
						
							| 8 |  | iotauni |  |-  ( E! x A F x -> ( iota x A F x ) = U. { x | A F x } ) | 
						
							| 9 | 7 8 | sylan9eq |  |-  ( ( F defAt A /\ E! x A F x ) -> ( F '''' A ) = U. { x | A F x } ) | 
						
							| 10 | 9 | ex |  |-  ( F defAt A -> ( E! x A F x -> ( F '''' A ) = U. { x | A F x } ) ) | 
						
							| 11 | 6 10 | sylbir |  |-  ( ( A e. dom F /\ E! x A F x ) -> ( E! x A F x -> ( F '''' A ) = U. { x | A F x } ) ) | 
						
							| 12 | 11 | expcom |  |-  ( E! x A F x -> ( A e. dom F -> ( E! x A F x -> ( F '''' A ) = U. { x | A F x } ) ) ) | 
						
							| 13 | 12 | pm2.43a |  |-  ( E! x A F x -> ( A e. dom F -> ( F '''' A ) = U. { x | A F x } ) ) | 
						
							| 14 | 13 | adantl |  |-  ( ( A e. _V /\ E! x A F x ) -> ( A e. dom F -> ( F '''' A ) = U. { x | A F x } ) ) | 
						
							| 15 | 5 14 | mpd |  |-  ( ( A e. _V /\ E! x A F x ) -> ( F '''' A ) = U. { x | A F x } ) | 
						
							| 16 | 1 15 | mpancom |  |-  ( E! x A F x -> ( F '''' A ) = U. { x | A F x } ) |