| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-dfat |  |-  ( F defAt A <-> ( A e. dom F /\ Fun ( F |` { A } ) ) ) | 
						
							| 2 |  | elin |  |-  ( A e. ( B i^i dom F ) <-> ( A e. B /\ A e. dom F ) ) | 
						
							| 3 | 2 | biimpri |  |-  ( ( A e. B /\ A e. dom F ) -> A e. ( B i^i dom F ) ) | 
						
							| 4 |  | dmres |  |-  dom ( F |` B ) = ( B i^i dom F ) | 
						
							| 5 | 3 4 | eleqtrrdi |  |-  ( ( A e. B /\ A e. dom F ) -> A e. dom ( F |` B ) ) | 
						
							| 6 | 5 | ex |  |-  ( A e. B -> ( A e. dom F -> A e. dom ( F |` B ) ) ) | 
						
							| 7 |  | snssi |  |-  ( A e. B -> { A } C_ B ) | 
						
							| 8 | 7 | resabs1d |  |-  ( A e. B -> ( ( F |` B ) |` { A } ) = ( F |` { A } ) ) | 
						
							| 9 | 8 | eqcomd |  |-  ( A e. B -> ( F |` { A } ) = ( ( F |` B ) |` { A } ) ) | 
						
							| 10 | 9 | funeqd |  |-  ( A e. B -> ( Fun ( F |` { A } ) <-> Fun ( ( F |` B ) |` { A } ) ) ) | 
						
							| 11 | 10 | biimpd |  |-  ( A e. B -> ( Fun ( F |` { A } ) -> Fun ( ( F |` B ) |` { A } ) ) ) | 
						
							| 12 | 6 11 | anim12d |  |-  ( A e. B -> ( ( A e. dom F /\ Fun ( F |` { A } ) ) -> ( A e. dom ( F |` B ) /\ Fun ( ( F |` B ) |` { A } ) ) ) ) | 
						
							| 13 | 12 | com12 |  |-  ( ( A e. dom F /\ Fun ( F |` { A } ) ) -> ( A e. B -> ( A e. dom ( F |` B ) /\ Fun ( ( F |` B ) |` { A } ) ) ) ) | 
						
							| 14 | 1 13 | sylbi |  |-  ( F defAt A -> ( A e. B -> ( A e. dom ( F |` B ) /\ Fun ( ( F |` B ) |` { A } ) ) ) ) | 
						
							| 15 | 14 | imp |  |-  ( ( F defAt A /\ A e. B ) -> ( A e. dom ( F |` B ) /\ Fun ( ( F |` B ) |` { A } ) ) ) | 
						
							| 16 |  | df-dfat |  |-  ( ( F |` B ) defAt A <-> ( A e. dom ( F |` B ) /\ Fun ( ( F |` B ) |` { A } ) ) ) | 
						
							| 17 |  | dfatafv2iota |  |-  ( ( F |` B ) defAt A -> ( ( F |` B ) '''' A ) = ( iota x A ( F |` B ) x ) ) | 
						
							| 18 | 16 17 | sylbir |  |-  ( ( A e. dom ( F |` B ) /\ Fun ( ( F |` B ) |` { A } ) ) -> ( ( F |` B ) '''' A ) = ( iota x A ( F |` B ) x ) ) | 
						
							| 19 | 15 18 | syl |  |-  ( ( F defAt A /\ A e. B ) -> ( ( F |` B ) '''' A ) = ( iota x A ( F |` B ) x ) ) | 
						
							| 20 |  | vex |  |-  x e. _V | 
						
							| 21 | 20 | brresi |  |-  ( A ( F |` B ) x <-> ( A e. B /\ A F x ) ) | 
						
							| 22 | 21 | baib |  |-  ( A e. B -> ( A ( F |` B ) x <-> A F x ) ) | 
						
							| 23 | 22 | iotabidv |  |-  ( A e. B -> ( iota x A ( F |` B ) x ) = ( iota x A F x ) ) | 
						
							| 24 | 23 | adantl |  |-  ( ( F defAt A /\ A e. B ) -> ( iota x A ( F |` B ) x ) = ( iota x A F x ) ) | 
						
							| 25 |  | dfatafv2iota |  |-  ( F defAt A -> ( F '''' A ) = ( iota x A F x ) ) | 
						
							| 26 | 25 | eqcomd |  |-  ( F defAt A -> ( iota x A F x ) = ( F '''' A ) ) | 
						
							| 27 | 26 | adantr |  |-  ( ( F defAt A /\ A e. B ) -> ( iota x A F x ) = ( F '''' A ) ) | 
						
							| 28 | 19 24 27 | 3eqtrd |  |-  ( ( F defAt A /\ A e. B ) -> ( ( F |` B ) '''' A ) = ( F '''' A ) ) |