Step |
Hyp |
Ref |
Expression |
1 |
|
df-dfat |
|- ( F defAt A <-> ( A e. dom F /\ Fun ( F |` { A } ) ) ) |
2 |
|
elin |
|- ( A e. ( B i^i dom F ) <-> ( A e. B /\ A e. dom F ) ) |
3 |
2
|
biimpri |
|- ( ( A e. B /\ A e. dom F ) -> A e. ( B i^i dom F ) ) |
4 |
|
dmres |
|- dom ( F |` B ) = ( B i^i dom F ) |
5 |
3 4
|
eleqtrrdi |
|- ( ( A e. B /\ A e. dom F ) -> A e. dom ( F |` B ) ) |
6 |
5
|
ex |
|- ( A e. B -> ( A e. dom F -> A e. dom ( F |` B ) ) ) |
7 |
|
snssi |
|- ( A e. B -> { A } C_ B ) |
8 |
7
|
resabs1d |
|- ( A e. B -> ( ( F |` B ) |` { A } ) = ( F |` { A } ) ) |
9 |
8
|
eqcomd |
|- ( A e. B -> ( F |` { A } ) = ( ( F |` B ) |` { A } ) ) |
10 |
9
|
funeqd |
|- ( A e. B -> ( Fun ( F |` { A } ) <-> Fun ( ( F |` B ) |` { A } ) ) ) |
11 |
10
|
biimpd |
|- ( A e. B -> ( Fun ( F |` { A } ) -> Fun ( ( F |` B ) |` { A } ) ) ) |
12 |
6 11
|
anim12d |
|- ( A e. B -> ( ( A e. dom F /\ Fun ( F |` { A } ) ) -> ( A e. dom ( F |` B ) /\ Fun ( ( F |` B ) |` { A } ) ) ) ) |
13 |
12
|
com12 |
|- ( ( A e. dom F /\ Fun ( F |` { A } ) ) -> ( A e. B -> ( A e. dom ( F |` B ) /\ Fun ( ( F |` B ) |` { A } ) ) ) ) |
14 |
1 13
|
sylbi |
|- ( F defAt A -> ( A e. B -> ( A e. dom ( F |` B ) /\ Fun ( ( F |` B ) |` { A } ) ) ) ) |
15 |
14
|
imp |
|- ( ( F defAt A /\ A e. B ) -> ( A e. dom ( F |` B ) /\ Fun ( ( F |` B ) |` { A } ) ) ) |
16 |
|
df-dfat |
|- ( ( F |` B ) defAt A <-> ( A e. dom ( F |` B ) /\ Fun ( ( F |` B ) |` { A } ) ) ) |
17 |
|
dfatafv2iota |
|- ( ( F |` B ) defAt A -> ( ( F |` B ) '''' A ) = ( iota x A ( F |` B ) x ) ) |
18 |
16 17
|
sylbir |
|- ( ( A e. dom ( F |` B ) /\ Fun ( ( F |` B ) |` { A } ) ) -> ( ( F |` B ) '''' A ) = ( iota x A ( F |` B ) x ) ) |
19 |
15 18
|
syl |
|- ( ( F defAt A /\ A e. B ) -> ( ( F |` B ) '''' A ) = ( iota x A ( F |` B ) x ) ) |
20 |
|
vex |
|- x e. _V |
21 |
20
|
brresi |
|- ( A ( F |` B ) x <-> ( A e. B /\ A F x ) ) |
22 |
21
|
baib |
|- ( A e. B -> ( A ( F |` B ) x <-> A F x ) ) |
23 |
22
|
iotabidv |
|- ( A e. B -> ( iota x A ( F |` B ) x ) = ( iota x A F x ) ) |
24 |
23
|
adantl |
|- ( ( F defAt A /\ A e. B ) -> ( iota x A ( F |` B ) x ) = ( iota x A F x ) ) |
25 |
|
dfatafv2iota |
|- ( F defAt A -> ( F '''' A ) = ( iota x A F x ) ) |
26 |
25
|
eqcomd |
|- ( F defAt A -> ( iota x A F x ) = ( F '''' A ) ) |
27 |
26
|
adantr |
|- ( ( F defAt A /\ A e. B ) -> ( iota x A F x ) = ( F '''' A ) ) |
28 |
19 24 27
|
3eqtrd |
|- ( ( F defAt A /\ A e. B ) -> ( ( F |` B ) '''' A ) = ( F '''' A ) ) |