Metamath Proof Explorer


Theorem afv2res

Description: The value of a restricted function for an argument at which the function is defined. Analog to fvres . (Contributed by AV, 5-Sep-2022)

Ref Expression
Assertion afv2res F defAt A A B F B '''' A = F '''' A

Proof

Step Hyp Ref Expression
1 df-dfat F defAt A A dom F Fun F A
2 elin A B dom F A B A dom F
3 2 biimpri A B A dom F A B dom F
4 dmres dom F B = B dom F
5 3 4 eleqtrrdi A B A dom F A dom F B
6 5 ex A B A dom F A dom F B
7 snssi A B A B
8 7 resabs1d A B F B A = F A
9 8 eqcomd A B F A = F B A
10 9 funeqd A B Fun F A Fun F B A
11 10 biimpd A B Fun F A Fun F B A
12 6 11 anim12d A B A dom F Fun F A A dom F B Fun F B A
13 12 com12 A dom F Fun F A A B A dom F B Fun F B A
14 1 13 sylbi F defAt A A B A dom F B Fun F B A
15 14 imp F defAt A A B A dom F B Fun F B A
16 df-dfat F B defAt A A dom F B Fun F B A
17 dfatafv2iota F B defAt A F B '''' A = ι x | A F B x
18 16 17 sylbir A dom F B Fun F B A F B '''' A = ι x | A F B x
19 15 18 syl F defAt A A B F B '''' A = ι x | A F B x
20 vex x V
21 20 brresi A F B x A B A F x
22 21 baib A B A F B x A F x
23 22 iotabidv A B ι x | A F B x = ι x | A F x
24 23 adantl F defAt A A B ι x | A F B x = ι x | A F x
25 dfatafv2iota F defAt A F '''' A = ι x | A F x
26 25 eqcomd F defAt A ι x | A F x = F '''' A
27 26 adantr F defAt A A B ι x | A F x = F '''' A
28 19 24 27 3eqtrd F defAt A A B F B '''' A = F '''' A