Metamath Proof Explorer


Theorem afv2res

Description: The value of a restricted function for an argument at which the function is defined. Analog to fvres . (Contributed by AV, 5-Sep-2022)

Ref Expression
Assertion afv2res FdefAtAABFB''''A=F''''A

Proof

Step Hyp Ref Expression
1 df-dfat FdefAtAAdomFFunFA
2 elin ABdomFABAdomF
3 2 biimpri ABAdomFABdomF
4 dmres domFB=BdomF
5 3 4 eleqtrrdi ABAdomFAdomFB
6 5 ex ABAdomFAdomFB
7 snssi ABAB
8 7 resabs1d ABFBA=FA
9 8 eqcomd ABFA=FBA
10 9 funeqd ABFunFAFunFBA
11 10 biimpd ABFunFAFunFBA
12 6 11 anim12d ABAdomFFunFAAdomFBFunFBA
13 12 com12 AdomFFunFAABAdomFBFunFBA
14 1 13 sylbi FdefAtAABAdomFBFunFBA
15 14 imp FdefAtAABAdomFBFunFBA
16 df-dfat FBdefAtAAdomFBFunFBA
17 dfatafv2iota FBdefAtAFB''''A=ιx|AFBx
18 16 17 sylbir AdomFBFunFBAFB''''A=ιx|AFBx
19 15 18 syl FdefAtAABFB''''A=ιx|AFBx
20 vex xV
21 20 brresi AFBxABAFx
22 21 baib ABAFBxAFx
23 22 iotabidv ABιx|AFBx=ιx|AFx
24 23 adantl FdefAtAABιx|AFBx=ιx|AFx
25 dfatafv2iota FdefAtAF''''A=ιx|AFx
26 25 eqcomd FdefAtAιx|AFx=F''''A
27 26 adantr FdefAtAABιx|AFx=F''''A
28 19 24 27 3eqtrd FdefAtAABFB''''A=F''''A