| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-dfat | ⊢ ( 𝐹  defAt  𝐴  ↔  ( 𝐴  ∈  dom  𝐹  ∧  Fun  ( 𝐹  ↾  { 𝐴 } ) ) ) | 
						
							| 2 |  | elin | ⊢ ( 𝐴  ∈  ( 𝐵  ∩  dom  𝐹 )  ↔  ( 𝐴  ∈  𝐵  ∧  𝐴  ∈  dom  𝐹 ) ) | 
						
							| 3 | 2 | biimpri | ⊢ ( ( 𝐴  ∈  𝐵  ∧  𝐴  ∈  dom  𝐹 )  →  𝐴  ∈  ( 𝐵  ∩  dom  𝐹 ) ) | 
						
							| 4 |  | dmres | ⊢ dom  ( 𝐹  ↾  𝐵 )  =  ( 𝐵  ∩  dom  𝐹 ) | 
						
							| 5 | 3 4 | eleqtrrdi | ⊢ ( ( 𝐴  ∈  𝐵  ∧  𝐴  ∈  dom  𝐹 )  →  𝐴  ∈  dom  ( 𝐹  ↾  𝐵 ) ) | 
						
							| 6 | 5 | ex | ⊢ ( 𝐴  ∈  𝐵  →  ( 𝐴  ∈  dom  𝐹  →  𝐴  ∈  dom  ( 𝐹  ↾  𝐵 ) ) ) | 
						
							| 7 |  | snssi | ⊢ ( 𝐴  ∈  𝐵  →  { 𝐴 }  ⊆  𝐵 ) | 
						
							| 8 | 7 | resabs1d | ⊢ ( 𝐴  ∈  𝐵  →  ( ( 𝐹  ↾  𝐵 )  ↾  { 𝐴 } )  =  ( 𝐹  ↾  { 𝐴 } ) ) | 
						
							| 9 | 8 | eqcomd | ⊢ ( 𝐴  ∈  𝐵  →  ( 𝐹  ↾  { 𝐴 } )  =  ( ( 𝐹  ↾  𝐵 )  ↾  { 𝐴 } ) ) | 
						
							| 10 | 9 | funeqd | ⊢ ( 𝐴  ∈  𝐵  →  ( Fun  ( 𝐹  ↾  { 𝐴 } )  ↔  Fun  ( ( 𝐹  ↾  𝐵 )  ↾  { 𝐴 } ) ) ) | 
						
							| 11 | 10 | biimpd | ⊢ ( 𝐴  ∈  𝐵  →  ( Fun  ( 𝐹  ↾  { 𝐴 } )  →  Fun  ( ( 𝐹  ↾  𝐵 )  ↾  { 𝐴 } ) ) ) | 
						
							| 12 | 6 11 | anim12d | ⊢ ( 𝐴  ∈  𝐵  →  ( ( 𝐴  ∈  dom  𝐹  ∧  Fun  ( 𝐹  ↾  { 𝐴 } ) )  →  ( 𝐴  ∈  dom  ( 𝐹  ↾  𝐵 )  ∧  Fun  ( ( 𝐹  ↾  𝐵 )  ↾  { 𝐴 } ) ) ) ) | 
						
							| 13 | 12 | com12 | ⊢ ( ( 𝐴  ∈  dom  𝐹  ∧  Fun  ( 𝐹  ↾  { 𝐴 } ) )  →  ( 𝐴  ∈  𝐵  →  ( 𝐴  ∈  dom  ( 𝐹  ↾  𝐵 )  ∧  Fun  ( ( 𝐹  ↾  𝐵 )  ↾  { 𝐴 } ) ) ) ) | 
						
							| 14 | 1 13 | sylbi | ⊢ ( 𝐹  defAt  𝐴  →  ( 𝐴  ∈  𝐵  →  ( 𝐴  ∈  dom  ( 𝐹  ↾  𝐵 )  ∧  Fun  ( ( 𝐹  ↾  𝐵 )  ↾  { 𝐴 } ) ) ) ) | 
						
							| 15 | 14 | imp | ⊢ ( ( 𝐹  defAt  𝐴  ∧  𝐴  ∈  𝐵 )  →  ( 𝐴  ∈  dom  ( 𝐹  ↾  𝐵 )  ∧  Fun  ( ( 𝐹  ↾  𝐵 )  ↾  { 𝐴 } ) ) ) | 
						
							| 16 |  | df-dfat | ⊢ ( ( 𝐹  ↾  𝐵 )  defAt  𝐴  ↔  ( 𝐴  ∈  dom  ( 𝐹  ↾  𝐵 )  ∧  Fun  ( ( 𝐹  ↾  𝐵 )  ↾  { 𝐴 } ) ) ) | 
						
							| 17 |  | dfatafv2iota | ⊢ ( ( 𝐹  ↾  𝐵 )  defAt  𝐴  →  ( ( 𝐹  ↾  𝐵 ) '''' 𝐴 )  =  ( ℩ 𝑥 𝐴 ( 𝐹  ↾  𝐵 ) 𝑥 ) ) | 
						
							| 18 | 16 17 | sylbir | ⊢ ( ( 𝐴  ∈  dom  ( 𝐹  ↾  𝐵 )  ∧  Fun  ( ( 𝐹  ↾  𝐵 )  ↾  { 𝐴 } ) )  →  ( ( 𝐹  ↾  𝐵 ) '''' 𝐴 )  =  ( ℩ 𝑥 𝐴 ( 𝐹  ↾  𝐵 ) 𝑥 ) ) | 
						
							| 19 | 15 18 | syl | ⊢ ( ( 𝐹  defAt  𝐴  ∧  𝐴  ∈  𝐵 )  →  ( ( 𝐹  ↾  𝐵 ) '''' 𝐴 )  =  ( ℩ 𝑥 𝐴 ( 𝐹  ↾  𝐵 ) 𝑥 ) ) | 
						
							| 20 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 21 | 20 | brresi | ⊢ ( 𝐴 ( 𝐹  ↾  𝐵 ) 𝑥  ↔  ( 𝐴  ∈  𝐵  ∧  𝐴 𝐹 𝑥 ) ) | 
						
							| 22 | 21 | baib | ⊢ ( 𝐴  ∈  𝐵  →  ( 𝐴 ( 𝐹  ↾  𝐵 ) 𝑥  ↔  𝐴 𝐹 𝑥 ) ) | 
						
							| 23 | 22 | iotabidv | ⊢ ( 𝐴  ∈  𝐵  →  ( ℩ 𝑥 𝐴 ( 𝐹  ↾  𝐵 ) 𝑥 )  =  ( ℩ 𝑥 𝐴 𝐹 𝑥 ) ) | 
						
							| 24 | 23 | adantl | ⊢ ( ( 𝐹  defAt  𝐴  ∧  𝐴  ∈  𝐵 )  →  ( ℩ 𝑥 𝐴 ( 𝐹  ↾  𝐵 ) 𝑥 )  =  ( ℩ 𝑥 𝐴 𝐹 𝑥 ) ) | 
						
							| 25 |  | dfatafv2iota | ⊢ ( 𝐹  defAt  𝐴  →  ( 𝐹 '''' 𝐴 )  =  ( ℩ 𝑥 𝐴 𝐹 𝑥 ) ) | 
						
							| 26 | 25 | eqcomd | ⊢ ( 𝐹  defAt  𝐴  →  ( ℩ 𝑥 𝐴 𝐹 𝑥 )  =  ( 𝐹 '''' 𝐴 ) ) | 
						
							| 27 | 26 | adantr | ⊢ ( ( 𝐹  defAt  𝐴  ∧  𝐴  ∈  𝐵 )  →  ( ℩ 𝑥 𝐴 𝐹 𝑥 )  =  ( 𝐹 '''' 𝐴 ) ) | 
						
							| 28 | 19 24 27 | 3eqtrd | ⊢ ( ( 𝐹  defAt  𝐴  ∧  𝐴  ∈  𝐵 )  →  ( ( 𝐹  ↾  𝐵 ) '''' 𝐴 )  =  ( 𝐹 '''' 𝐴 ) ) |