Metamath Proof Explorer


Theorem afv2res

Description: The value of a restricted function for an argument at which the function is defined. Analog to fvres . (Contributed by AV, 5-Sep-2022)

Ref Expression
Assertion afv2res ( ( 𝐹 defAt 𝐴𝐴𝐵 ) → ( ( 𝐹𝐵 ) '''' 𝐴 ) = ( 𝐹 '''' 𝐴 ) )

Proof

Step Hyp Ref Expression
1 df-dfat ( 𝐹 defAt 𝐴 ↔ ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) )
2 elin ( 𝐴 ∈ ( 𝐵 ∩ dom 𝐹 ) ↔ ( 𝐴𝐵𝐴 ∈ dom 𝐹 ) )
3 2 biimpri ( ( 𝐴𝐵𝐴 ∈ dom 𝐹 ) → 𝐴 ∈ ( 𝐵 ∩ dom 𝐹 ) )
4 dmres dom ( 𝐹𝐵 ) = ( 𝐵 ∩ dom 𝐹 )
5 3 4 eleqtrrdi ( ( 𝐴𝐵𝐴 ∈ dom 𝐹 ) → 𝐴 ∈ dom ( 𝐹𝐵 ) )
6 5 ex ( 𝐴𝐵 → ( 𝐴 ∈ dom 𝐹𝐴 ∈ dom ( 𝐹𝐵 ) ) )
7 snssi ( 𝐴𝐵 → { 𝐴 } ⊆ 𝐵 )
8 7 resabs1d ( 𝐴𝐵 → ( ( 𝐹𝐵 ) ↾ { 𝐴 } ) = ( 𝐹 ↾ { 𝐴 } ) )
9 8 eqcomd ( 𝐴𝐵 → ( 𝐹 ↾ { 𝐴 } ) = ( ( 𝐹𝐵 ) ↾ { 𝐴 } ) )
10 9 funeqd ( 𝐴𝐵 → ( Fun ( 𝐹 ↾ { 𝐴 } ) ↔ Fun ( ( 𝐹𝐵 ) ↾ { 𝐴 } ) ) )
11 10 biimpd ( 𝐴𝐵 → ( Fun ( 𝐹 ↾ { 𝐴 } ) → Fun ( ( 𝐹𝐵 ) ↾ { 𝐴 } ) ) )
12 6 11 anim12d ( 𝐴𝐵 → ( ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) → ( 𝐴 ∈ dom ( 𝐹𝐵 ) ∧ Fun ( ( 𝐹𝐵 ) ↾ { 𝐴 } ) ) ) )
13 12 com12 ( ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) → ( 𝐴𝐵 → ( 𝐴 ∈ dom ( 𝐹𝐵 ) ∧ Fun ( ( 𝐹𝐵 ) ↾ { 𝐴 } ) ) ) )
14 1 13 sylbi ( 𝐹 defAt 𝐴 → ( 𝐴𝐵 → ( 𝐴 ∈ dom ( 𝐹𝐵 ) ∧ Fun ( ( 𝐹𝐵 ) ↾ { 𝐴 } ) ) ) )
15 14 imp ( ( 𝐹 defAt 𝐴𝐴𝐵 ) → ( 𝐴 ∈ dom ( 𝐹𝐵 ) ∧ Fun ( ( 𝐹𝐵 ) ↾ { 𝐴 } ) ) )
16 df-dfat ( ( 𝐹𝐵 ) defAt 𝐴 ↔ ( 𝐴 ∈ dom ( 𝐹𝐵 ) ∧ Fun ( ( 𝐹𝐵 ) ↾ { 𝐴 } ) ) )
17 dfatafv2iota ( ( 𝐹𝐵 ) defAt 𝐴 → ( ( 𝐹𝐵 ) '''' 𝐴 ) = ( ℩ 𝑥 𝐴 ( 𝐹𝐵 ) 𝑥 ) )
18 16 17 sylbir ( ( 𝐴 ∈ dom ( 𝐹𝐵 ) ∧ Fun ( ( 𝐹𝐵 ) ↾ { 𝐴 } ) ) → ( ( 𝐹𝐵 ) '''' 𝐴 ) = ( ℩ 𝑥 𝐴 ( 𝐹𝐵 ) 𝑥 ) )
19 15 18 syl ( ( 𝐹 defAt 𝐴𝐴𝐵 ) → ( ( 𝐹𝐵 ) '''' 𝐴 ) = ( ℩ 𝑥 𝐴 ( 𝐹𝐵 ) 𝑥 ) )
20 vex 𝑥 ∈ V
21 20 brresi ( 𝐴 ( 𝐹𝐵 ) 𝑥 ↔ ( 𝐴𝐵𝐴 𝐹 𝑥 ) )
22 21 baib ( 𝐴𝐵 → ( 𝐴 ( 𝐹𝐵 ) 𝑥𝐴 𝐹 𝑥 ) )
23 22 iotabidv ( 𝐴𝐵 → ( ℩ 𝑥 𝐴 ( 𝐹𝐵 ) 𝑥 ) = ( ℩ 𝑥 𝐴 𝐹 𝑥 ) )
24 23 adantl ( ( 𝐹 defAt 𝐴𝐴𝐵 ) → ( ℩ 𝑥 𝐴 ( 𝐹𝐵 ) 𝑥 ) = ( ℩ 𝑥 𝐴 𝐹 𝑥 ) )
25 dfatafv2iota ( 𝐹 defAt 𝐴 → ( 𝐹 '''' 𝐴 ) = ( ℩ 𝑥 𝐴 𝐹 𝑥 ) )
26 25 eqcomd ( 𝐹 defAt 𝐴 → ( ℩ 𝑥 𝐴 𝐹 𝑥 ) = ( 𝐹 '''' 𝐴 ) )
27 26 adantr ( ( 𝐹 defAt 𝐴𝐴𝐵 ) → ( ℩ 𝑥 𝐴 𝐹 𝑥 ) = ( 𝐹 '''' 𝐴 ) )
28 19 24 27 3eqtrd ( ( 𝐹 defAt 𝐴𝐴𝐵 ) → ( ( 𝐹𝐵 ) '''' 𝐴 ) = ( 𝐹 '''' 𝐴 ) )