Step |
Hyp |
Ref |
Expression |
1 |
|
df-dfat |
⊢ ( 𝐹 defAt 𝐴 ↔ ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) ) |
2 |
|
elin |
⊢ ( 𝐴 ∈ ( 𝐵 ∩ dom 𝐹 ) ↔ ( 𝐴 ∈ 𝐵 ∧ 𝐴 ∈ dom 𝐹 ) ) |
3 |
2
|
biimpri |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐴 ∈ dom 𝐹 ) → 𝐴 ∈ ( 𝐵 ∩ dom 𝐹 ) ) |
4 |
|
dmres |
⊢ dom ( 𝐹 ↾ 𝐵 ) = ( 𝐵 ∩ dom 𝐹 ) |
5 |
3 4
|
eleqtrrdi |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐴 ∈ dom 𝐹 ) → 𝐴 ∈ dom ( 𝐹 ↾ 𝐵 ) ) |
6 |
5
|
ex |
⊢ ( 𝐴 ∈ 𝐵 → ( 𝐴 ∈ dom 𝐹 → 𝐴 ∈ dom ( 𝐹 ↾ 𝐵 ) ) ) |
7 |
|
snssi |
⊢ ( 𝐴 ∈ 𝐵 → { 𝐴 } ⊆ 𝐵 ) |
8 |
7
|
resabs1d |
⊢ ( 𝐴 ∈ 𝐵 → ( ( 𝐹 ↾ 𝐵 ) ↾ { 𝐴 } ) = ( 𝐹 ↾ { 𝐴 } ) ) |
9 |
8
|
eqcomd |
⊢ ( 𝐴 ∈ 𝐵 → ( 𝐹 ↾ { 𝐴 } ) = ( ( 𝐹 ↾ 𝐵 ) ↾ { 𝐴 } ) ) |
10 |
9
|
funeqd |
⊢ ( 𝐴 ∈ 𝐵 → ( Fun ( 𝐹 ↾ { 𝐴 } ) ↔ Fun ( ( 𝐹 ↾ 𝐵 ) ↾ { 𝐴 } ) ) ) |
11 |
10
|
biimpd |
⊢ ( 𝐴 ∈ 𝐵 → ( Fun ( 𝐹 ↾ { 𝐴 } ) → Fun ( ( 𝐹 ↾ 𝐵 ) ↾ { 𝐴 } ) ) ) |
12 |
6 11
|
anim12d |
⊢ ( 𝐴 ∈ 𝐵 → ( ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) → ( 𝐴 ∈ dom ( 𝐹 ↾ 𝐵 ) ∧ Fun ( ( 𝐹 ↾ 𝐵 ) ↾ { 𝐴 } ) ) ) ) |
13 |
12
|
com12 |
⊢ ( ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) → ( 𝐴 ∈ 𝐵 → ( 𝐴 ∈ dom ( 𝐹 ↾ 𝐵 ) ∧ Fun ( ( 𝐹 ↾ 𝐵 ) ↾ { 𝐴 } ) ) ) ) |
14 |
1 13
|
sylbi |
⊢ ( 𝐹 defAt 𝐴 → ( 𝐴 ∈ 𝐵 → ( 𝐴 ∈ dom ( 𝐹 ↾ 𝐵 ) ∧ Fun ( ( 𝐹 ↾ 𝐵 ) ↾ { 𝐴 } ) ) ) ) |
15 |
14
|
imp |
⊢ ( ( 𝐹 defAt 𝐴 ∧ 𝐴 ∈ 𝐵 ) → ( 𝐴 ∈ dom ( 𝐹 ↾ 𝐵 ) ∧ Fun ( ( 𝐹 ↾ 𝐵 ) ↾ { 𝐴 } ) ) ) |
16 |
|
df-dfat |
⊢ ( ( 𝐹 ↾ 𝐵 ) defAt 𝐴 ↔ ( 𝐴 ∈ dom ( 𝐹 ↾ 𝐵 ) ∧ Fun ( ( 𝐹 ↾ 𝐵 ) ↾ { 𝐴 } ) ) ) |
17 |
|
dfatafv2iota |
⊢ ( ( 𝐹 ↾ 𝐵 ) defAt 𝐴 → ( ( 𝐹 ↾ 𝐵 ) '''' 𝐴 ) = ( ℩ 𝑥 𝐴 ( 𝐹 ↾ 𝐵 ) 𝑥 ) ) |
18 |
16 17
|
sylbir |
⊢ ( ( 𝐴 ∈ dom ( 𝐹 ↾ 𝐵 ) ∧ Fun ( ( 𝐹 ↾ 𝐵 ) ↾ { 𝐴 } ) ) → ( ( 𝐹 ↾ 𝐵 ) '''' 𝐴 ) = ( ℩ 𝑥 𝐴 ( 𝐹 ↾ 𝐵 ) 𝑥 ) ) |
19 |
15 18
|
syl |
⊢ ( ( 𝐹 defAt 𝐴 ∧ 𝐴 ∈ 𝐵 ) → ( ( 𝐹 ↾ 𝐵 ) '''' 𝐴 ) = ( ℩ 𝑥 𝐴 ( 𝐹 ↾ 𝐵 ) 𝑥 ) ) |
20 |
|
vex |
⊢ 𝑥 ∈ V |
21 |
20
|
brresi |
⊢ ( 𝐴 ( 𝐹 ↾ 𝐵 ) 𝑥 ↔ ( 𝐴 ∈ 𝐵 ∧ 𝐴 𝐹 𝑥 ) ) |
22 |
21
|
baib |
⊢ ( 𝐴 ∈ 𝐵 → ( 𝐴 ( 𝐹 ↾ 𝐵 ) 𝑥 ↔ 𝐴 𝐹 𝑥 ) ) |
23 |
22
|
iotabidv |
⊢ ( 𝐴 ∈ 𝐵 → ( ℩ 𝑥 𝐴 ( 𝐹 ↾ 𝐵 ) 𝑥 ) = ( ℩ 𝑥 𝐴 𝐹 𝑥 ) ) |
24 |
23
|
adantl |
⊢ ( ( 𝐹 defAt 𝐴 ∧ 𝐴 ∈ 𝐵 ) → ( ℩ 𝑥 𝐴 ( 𝐹 ↾ 𝐵 ) 𝑥 ) = ( ℩ 𝑥 𝐴 𝐹 𝑥 ) ) |
25 |
|
dfatafv2iota |
⊢ ( 𝐹 defAt 𝐴 → ( 𝐹 '''' 𝐴 ) = ( ℩ 𝑥 𝐴 𝐹 𝑥 ) ) |
26 |
25
|
eqcomd |
⊢ ( 𝐹 defAt 𝐴 → ( ℩ 𝑥 𝐴 𝐹 𝑥 ) = ( 𝐹 '''' 𝐴 ) ) |
27 |
26
|
adantr |
⊢ ( ( 𝐹 defAt 𝐴 ∧ 𝐴 ∈ 𝐵 ) → ( ℩ 𝑥 𝐴 𝐹 𝑥 ) = ( 𝐹 '''' 𝐴 ) ) |
28 |
19 24 27
|
3eqtrd |
⊢ ( ( 𝐹 defAt 𝐴 ∧ 𝐴 ∈ 𝐵 ) → ( ( 𝐹 ↾ 𝐵 ) '''' 𝐴 ) = ( 𝐹 '''' 𝐴 ) ) |