Step |
Hyp |
Ref |
Expression |
1 |
|
eubrv |
⊢ ( ∃! 𝑥 𝐴 𝐹 𝑥 → 𝐴 ∈ V ) |
2 |
|
euex |
⊢ ( ∃! 𝑥 𝐴 𝐹 𝑥 → ∃ 𝑥 𝐴 𝐹 𝑥 ) |
3 |
|
eldmg |
⊢ ( 𝐴 ∈ V → ( 𝐴 ∈ dom 𝐹 ↔ ∃ 𝑥 𝐴 𝐹 𝑥 ) ) |
4 |
2 3
|
syl5ibrcom |
⊢ ( ∃! 𝑥 𝐴 𝐹 𝑥 → ( 𝐴 ∈ V → 𝐴 ∈ dom 𝐹 ) ) |
5 |
4
|
impcom |
⊢ ( ( 𝐴 ∈ V ∧ ∃! 𝑥 𝐴 𝐹 𝑥 ) → 𝐴 ∈ dom 𝐹 ) |
6 |
|
dfdfat2 |
⊢ ( 𝐹 defAt 𝐴 ↔ ( 𝐴 ∈ dom 𝐹 ∧ ∃! 𝑥 𝐴 𝐹 𝑥 ) ) |
7 |
|
dfatafv2iota |
⊢ ( 𝐹 defAt 𝐴 → ( 𝐹 '''' 𝐴 ) = ( ℩ 𝑥 𝐴 𝐹 𝑥 ) ) |
8 |
|
iotauni |
⊢ ( ∃! 𝑥 𝐴 𝐹 𝑥 → ( ℩ 𝑥 𝐴 𝐹 𝑥 ) = ∪ { 𝑥 ∣ 𝐴 𝐹 𝑥 } ) |
9 |
7 8
|
sylan9eq |
⊢ ( ( 𝐹 defAt 𝐴 ∧ ∃! 𝑥 𝐴 𝐹 𝑥 ) → ( 𝐹 '''' 𝐴 ) = ∪ { 𝑥 ∣ 𝐴 𝐹 𝑥 } ) |
10 |
9
|
ex |
⊢ ( 𝐹 defAt 𝐴 → ( ∃! 𝑥 𝐴 𝐹 𝑥 → ( 𝐹 '''' 𝐴 ) = ∪ { 𝑥 ∣ 𝐴 𝐹 𝑥 } ) ) |
11 |
6 10
|
sylbir |
⊢ ( ( 𝐴 ∈ dom 𝐹 ∧ ∃! 𝑥 𝐴 𝐹 𝑥 ) → ( ∃! 𝑥 𝐴 𝐹 𝑥 → ( 𝐹 '''' 𝐴 ) = ∪ { 𝑥 ∣ 𝐴 𝐹 𝑥 } ) ) |
12 |
11
|
expcom |
⊢ ( ∃! 𝑥 𝐴 𝐹 𝑥 → ( 𝐴 ∈ dom 𝐹 → ( ∃! 𝑥 𝐴 𝐹 𝑥 → ( 𝐹 '''' 𝐴 ) = ∪ { 𝑥 ∣ 𝐴 𝐹 𝑥 } ) ) ) |
13 |
12
|
pm2.43a |
⊢ ( ∃! 𝑥 𝐴 𝐹 𝑥 → ( 𝐴 ∈ dom 𝐹 → ( 𝐹 '''' 𝐴 ) = ∪ { 𝑥 ∣ 𝐴 𝐹 𝑥 } ) ) |
14 |
13
|
adantl |
⊢ ( ( 𝐴 ∈ V ∧ ∃! 𝑥 𝐴 𝐹 𝑥 ) → ( 𝐴 ∈ dom 𝐹 → ( 𝐹 '''' 𝐴 ) = ∪ { 𝑥 ∣ 𝐴 𝐹 𝑥 } ) ) |
15 |
5 14
|
mpd |
⊢ ( ( 𝐴 ∈ V ∧ ∃! 𝑥 𝐴 𝐹 𝑥 ) → ( 𝐹 '''' 𝐴 ) = ∪ { 𝑥 ∣ 𝐴 𝐹 𝑥 } ) |
16 |
1 15
|
mpancom |
⊢ ( ∃! 𝑥 𝐴 𝐹 𝑥 → ( 𝐹 '''' 𝐴 ) = ∪ { 𝑥 ∣ 𝐴 𝐹 𝑥 } ) |