Metamath Proof Explorer


Theorem afv2eu

Description: The value of a function at a unique point, analogous to fveu . (Contributed by AV, 5-Sep-2022)

Ref Expression
Assertion afv2eu ( ∃! 𝑥 𝐴 𝐹 𝑥 → ( 𝐹 '''' 𝐴 ) = { 𝑥𝐴 𝐹 𝑥 } )

Proof

Step Hyp Ref Expression
1 eubrv ( ∃! 𝑥 𝐴 𝐹 𝑥𝐴 ∈ V )
2 euex ( ∃! 𝑥 𝐴 𝐹 𝑥 → ∃ 𝑥 𝐴 𝐹 𝑥 )
3 eldmg ( 𝐴 ∈ V → ( 𝐴 ∈ dom 𝐹 ↔ ∃ 𝑥 𝐴 𝐹 𝑥 ) )
4 2 3 syl5ibrcom ( ∃! 𝑥 𝐴 𝐹 𝑥 → ( 𝐴 ∈ V → 𝐴 ∈ dom 𝐹 ) )
5 4 impcom ( ( 𝐴 ∈ V ∧ ∃! 𝑥 𝐴 𝐹 𝑥 ) → 𝐴 ∈ dom 𝐹 )
6 dfdfat2 ( 𝐹 defAt 𝐴 ↔ ( 𝐴 ∈ dom 𝐹 ∧ ∃! 𝑥 𝐴 𝐹 𝑥 ) )
7 dfatafv2iota ( 𝐹 defAt 𝐴 → ( 𝐹 '''' 𝐴 ) = ( ℩ 𝑥 𝐴 𝐹 𝑥 ) )
8 iotauni ( ∃! 𝑥 𝐴 𝐹 𝑥 → ( ℩ 𝑥 𝐴 𝐹 𝑥 ) = { 𝑥𝐴 𝐹 𝑥 } )
9 7 8 sylan9eq ( ( 𝐹 defAt 𝐴 ∧ ∃! 𝑥 𝐴 𝐹 𝑥 ) → ( 𝐹 '''' 𝐴 ) = { 𝑥𝐴 𝐹 𝑥 } )
10 9 ex ( 𝐹 defAt 𝐴 → ( ∃! 𝑥 𝐴 𝐹 𝑥 → ( 𝐹 '''' 𝐴 ) = { 𝑥𝐴 𝐹 𝑥 } ) )
11 6 10 sylbir ( ( 𝐴 ∈ dom 𝐹 ∧ ∃! 𝑥 𝐴 𝐹 𝑥 ) → ( ∃! 𝑥 𝐴 𝐹 𝑥 → ( 𝐹 '''' 𝐴 ) = { 𝑥𝐴 𝐹 𝑥 } ) )
12 11 expcom ( ∃! 𝑥 𝐴 𝐹 𝑥 → ( 𝐴 ∈ dom 𝐹 → ( ∃! 𝑥 𝐴 𝐹 𝑥 → ( 𝐹 '''' 𝐴 ) = { 𝑥𝐴 𝐹 𝑥 } ) ) )
13 12 pm2.43a ( ∃! 𝑥 𝐴 𝐹 𝑥 → ( 𝐴 ∈ dom 𝐹 → ( 𝐹 '''' 𝐴 ) = { 𝑥𝐴 𝐹 𝑥 } ) )
14 13 adantl ( ( 𝐴 ∈ V ∧ ∃! 𝑥 𝐴 𝐹 𝑥 ) → ( 𝐴 ∈ dom 𝐹 → ( 𝐹 '''' 𝐴 ) = { 𝑥𝐴 𝐹 𝑥 } ) )
15 5 14 mpd ( ( 𝐴 ∈ V ∧ ∃! 𝑥 𝐴 𝐹 𝑥 ) → ( 𝐹 '''' 𝐴 ) = { 𝑥𝐴 𝐹 𝑥 } )
16 1 15 mpancom ( ∃! 𝑥 𝐴 𝐹 𝑥 → ( 𝐹 '''' 𝐴 ) = { 𝑥𝐴 𝐹 𝑥 } )