| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eubrv | ⊢ ( ∃! 𝑥 𝐴 𝐹 𝑥  →  𝐴  ∈  V ) | 
						
							| 2 |  | euex | ⊢ ( ∃! 𝑥 𝐴 𝐹 𝑥  →  ∃ 𝑥 𝐴 𝐹 𝑥 ) | 
						
							| 3 |  | eldmg | ⊢ ( 𝐴  ∈  V  →  ( 𝐴  ∈  dom  𝐹  ↔  ∃ 𝑥 𝐴 𝐹 𝑥 ) ) | 
						
							| 4 | 2 3 | syl5ibrcom | ⊢ ( ∃! 𝑥 𝐴 𝐹 𝑥  →  ( 𝐴  ∈  V  →  𝐴  ∈  dom  𝐹 ) ) | 
						
							| 5 | 4 | impcom | ⊢ ( ( 𝐴  ∈  V  ∧  ∃! 𝑥 𝐴 𝐹 𝑥 )  →  𝐴  ∈  dom  𝐹 ) | 
						
							| 6 |  | dfdfat2 | ⊢ ( 𝐹  defAt  𝐴  ↔  ( 𝐴  ∈  dom  𝐹  ∧  ∃! 𝑥 𝐴 𝐹 𝑥 ) ) | 
						
							| 7 |  | dfatafv2iota | ⊢ ( 𝐹  defAt  𝐴  →  ( 𝐹 '''' 𝐴 )  =  ( ℩ 𝑥 𝐴 𝐹 𝑥 ) ) | 
						
							| 8 |  | iotauni | ⊢ ( ∃! 𝑥 𝐴 𝐹 𝑥  →  ( ℩ 𝑥 𝐴 𝐹 𝑥 )  =  ∪  { 𝑥  ∣  𝐴 𝐹 𝑥 } ) | 
						
							| 9 | 7 8 | sylan9eq | ⊢ ( ( 𝐹  defAt  𝐴  ∧  ∃! 𝑥 𝐴 𝐹 𝑥 )  →  ( 𝐹 '''' 𝐴 )  =  ∪  { 𝑥  ∣  𝐴 𝐹 𝑥 } ) | 
						
							| 10 | 9 | ex | ⊢ ( 𝐹  defAt  𝐴  →  ( ∃! 𝑥 𝐴 𝐹 𝑥  →  ( 𝐹 '''' 𝐴 )  =  ∪  { 𝑥  ∣  𝐴 𝐹 𝑥 } ) ) | 
						
							| 11 | 6 10 | sylbir | ⊢ ( ( 𝐴  ∈  dom  𝐹  ∧  ∃! 𝑥 𝐴 𝐹 𝑥 )  →  ( ∃! 𝑥 𝐴 𝐹 𝑥  →  ( 𝐹 '''' 𝐴 )  =  ∪  { 𝑥  ∣  𝐴 𝐹 𝑥 } ) ) | 
						
							| 12 | 11 | expcom | ⊢ ( ∃! 𝑥 𝐴 𝐹 𝑥  →  ( 𝐴  ∈  dom  𝐹  →  ( ∃! 𝑥 𝐴 𝐹 𝑥  →  ( 𝐹 '''' 𝐴 )  =  ∪  { 𝑥  ∣  𝐴 𝐹 𝑥 } ) ) ) | 
						
							| 13 | 12 | pm2.43a | ⊢ ( ∃! 𝑥 𝐴 𝐹 𝑥  →  ( 𝐴  ∈  dom  𝐹  →  ( 𝐹 '''' 𝐴 )  =  ∪  { 𝑥  ∣  𝐴 𝐹 𝑥 } ) ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( 𝐴  ∈  V  ∧  ∃! 𝑥 𝐴 𝐹 𝑥 )  →  ( 𝐴  ∈  dom  𝐹  →  ( 𝐹 '''' 𝐴 )  =  ∪  { 𝑥  ∣  𝐴 𝐹 𝑥 } ) ) | 
						
							| 15 | 5 14 | mpd | ⊢ ( ( 𝐴  ∈  V  ∧  ∃! 𝑥 𝐴 𝐹 𝑥 )  →  ( 𝐹 '''' 𝐴 )  =  ∪  { 𝑥  ∣  𝐴 𝐹 𝑥 } ) | 
						
							| 16 | 1 15 | mpancom | ⊢ ( ∃! 𝑥 𝐴 𝐹 𝑥  →  ( 𝐹 '''' 𝐴 )  =  ∪  { 𝑥  ∣  𝐴 𝐹 𝑥 } ) |