Metamath Proof Explorer


Theorem tz6.12-2-afv2

Description: Function value when F is (locally) not a function. Theorem 6.12(2) of TakeutiZaring p. 27, analogous to tz6.12-2 . (Contributed by AV, 5-Sep-2022)

Ref Expression
Assertion tz6.12-2-afv2 ¬ ∃! x A F x F '''' A ran F

Proof

Step Hyp Ref Expression
1 dfdfat2 F defAt A A dom F ∃! x A F x
2 1 simprbi F defAt A ∃! x A F x
3 ndfatafv2nrn ¬ F defAt A F '''' A ran F
4 2 3 nsyl5 ¬ ∃! x A F x F '''' A ran F