Metamath Proof Explorer


Theorem tz6.12-2-afv2

Description: Function value when F is (locally) not a function. Theorem 6.12(2) of TakeutiZaring p. 27, analogous to tz6.12-2 . (Contributed by AV, 5-Sep-2022)

Ref Expression
Assertion tz6.12-2-afv2 ( ¬ ∃! 𝑥 𝐴 𝐹 𝑥 → ( 𝐹 '''' 𝐴 ) ∉ ran 𝐹 )

Proof

Step Hyp Ref Expression
1 dfdfat2 ( 𝐹 defAt 𝐴 ↔ ( 𝐴 ∈ dom 𝐹 ∧ ∃! 𝑥 𝐴 𝐹 𝑥 ) )
2 1 simprbi ( 𝐹 defAt 𝐴 → ∃! 𝑥 𝐴 𝐹 𝑥 )
3 ndfatafv2nrn ( ¬ 𝐹 defAt 𝐴 → ( 𝐹 '''' 𝐴 ) ∉ ran 𝐹 )
4 2 3 nsyl5 ( ¬ ∃! 𝑥 𝐴 𝐹 𝑥 → ( 𝐹 '''' 𝐴 ) ∉ ran 𝐹 )