Step |
Hyp |
Ref |
Expression |
1 |
|
tz7.49c.1 |
|- F Fn On |
2 |
|
biid |
|- ( A. x e. On ( ( A \ ( F " x ) ) =/= (/) -> ( F ` x ) e. ( A \ ( F " x ) ) ) <-> A. x e. On ( ( A \ ( F " x ) ) =/= (/) -> ( F ` x ) e. ( A \ ( F " x ) ) ) ) |
3 |
1 2
|
tz7.49 |
|- ( ( A e. B /\ A. x e. On ( ( A \ ( F " x ) ) =/= (/) -> ( F ` x ) e. ( A \ ( F " x ) ) ) ) -> E. x e. On ( A. y e. x ( A \ ( F " y ) ) =/= (/) /\ ( F " x ) = A /\ Fun `' ( F |` x ) ) ) |
4 |
|
3simpc |
|- ( ( A. y e. x ( A \ ( F " y ) ) =/= (/) /\ ( F " x ) = A /\ Fun `' ( F |` x ) ) -> ( ( F " x ) = A /\ Fun `' ( F |` x ) ) ) |
5 |
|
onss |
|- ( x e. On -> x C_ On ) |
6 |
|
fnssres |
|- ( ( F Fn On /\ x C_ On ) -> ( F |` x ) Fn x ) |
7 |
1 5 6
|
sylancr |
|- ( x e. On -> ( F |` x ) Fn x ) |
8 |
|
df-ima |
|- ( F " x ) = ran ( F |` x ) |
9 |
8
|
eqeq1i |
|- ( ( F " x ) = A <-> ran ( F |` x ) = A ) |
10 |
9
|
biimpi |
|- ( ( F " x ) = A -> ran ( F |` x ) = A ) |
11 |
7 10
|
anim12i |
|- ( ( x e. On /\ ( F " x ) = A ) -> ( ( F |` x ) Fn x /\ ran ( F |` x ) = A ) ) |
12 |
11
|
anim1i |
|- ( ( ( x e. On /\ ( F " x ) = A ) /\ Fun `' ( F |` x ) ) -> ( ( ( F |` x ) Fn x /\ ran ( F |` x ) = A ) /\ Fun `' ( F |` x ) ) ) |
13 |
|
dff1o2 |
|- ( ( F |` x ) : x -1-1-onto-> A <-> ( ( F |` x ) Fn x /\ Fun `' ( F |` x ) /\ ran ( F |` x ) = A ) ) |
14 |
|
3anan32 |
|- ( ( ( F |` x ) Fn x /\ Fun `' ( F |` x ) /\ ran ( F |` x ) = A ) <-> ( ( ( F |` x ) Fn x /\ ran ( F |` x ) = A ) /\ Fun `' ( F |` x ) ) ) |
15 |
13 14
|
bitri |
|- ( ( F |` x ) : x -1-1-onto-> A <-> ( ( ( F |` x ) Fn x /\ ran ( F |` x ) = A ) /\ Fun `' ( F |` x ) ) ) |
16 |
12 15
|
sylibr |
|- ( ( ( x e. On /\ ( F " x ) = A ) /\ Fun `' ( F |` x ) ) -> ( F |` x ) : x -1-1-onto-> A ) |
17 |
16
|
expl |
|- ( x e. On -> ( ( ( F " x ) = A /\ Fun `' ( F |` x ) ) -> ( F |` x ) : x -1-1-onto-> A ) ) |
18 |
4 17
|
syl5 |
|- ( x e. On -> ( ( A. y e. x ( A \ ( F " y ) ) =/= (/) /\ ( F " x ) = A /\ Fun `' ( F |` x ) ) -> ( F |` x ) : x -1-1-onto-> A ) ) |
19 |
18
|
reximia |
|- ( E. x e. On ( A. y e. x ( A \ ( F " y ) ) =/= (/) /\ ( F " x ) = A /\ Fun `' ( F |` x ) ) -> E. x e. On ( F |` x ) : x -1-1-onto-> A ) |
20 |
3 19
|
syl |
|- ( ( A e. B /\ A. x e. On ( ( A \ ( F " x ) ) =/= (/) -> ( F ` x ) e. ( A \ ( F " x ) ) ) ) -> E. x e. On ( F |` x ) : x -1-1-onto-> A ) |