| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ulmdv.z |
|- Z = ( ZZ>= ` M ) |
| 2 |
|
ulmdv.s |
|- ( ph -> S e. { RR , CC } ) |
| 3 |
|
ulmdv.m |
|- ( ph -> M e. ZZ ) |
| 4 |
|
ulmdv.f |
|- ( ph -> F : Z --> ( CC ^m X ) ) |
| 5 |
|
ulmdv.g |
|- ( ph -> G : X --> CC ) |
| 6 |
|
ulmdv.l |
|- ( ( ph /\ z e. X ) -> ( k e. Z |-> ( ( F ` k ) ` z ) ) ~~> ( G ` z ) ) |
| 7 |
|
ulmdv.u |
|- ( ph -> ( k e. Z |-> ( S _D ( F ` k ) ) ) ( ~~>u ` X ) H ) |
| 8 |
|
dvfg |
|- ( S e. { RR , CC } -> ( S _D G ) : dom ( S _D G ) --> CC ) |
| 9 |
2 8
|
syl |
|- ( ph -> ( S _D G ) : dom ( S _D G ) --> CC ) |
| 10 |
|
recnprss |
|- ( S e. { RR , CC } -> S C_ CC ) |
| 11 |
2 10
|
syl |
|- ( ph -> S C_ CC ) |
| 12 |
|
biidd |
|- ( k = M -> ( X C_ S <-> X C_ S ) ) |
| 13 |
1 2 3 4 5 6 7
|
ulmdvlem2 |
|- ( ( ph /\ k e. Z ) -> dom ( S _D ( F ` k ) ) = X ) |
| 14 |
|
dvbsss |
|- dom ( S _D ( F ` k ) ) C_ S |
| 15 |
13 14
|
eqsstrrdi |
|- ( ( ph /\ k e. Z ) -> X C_ S ) |
| 16 |
15
|
ralrimiva |
|- ( ph -> A. k e. Z X C_ S ) |
| 17 |
|
uzid |
|- ( M e. ZZ -> M e. ( ZZ>= ` M ) ) |
| 18 |
3 17
|
syl |
|- ( ph -> M e. ( ZZ>= ` M ) ) |
| 19 |
18 1
|
eleqtrrdi |
|- ( ph -> M e. Z ) |
| 20 |
12 16 19
|
rspcdva |
|- ( ph -> X C_ S ) |
| 21 |
11 5 20
|
dvbss |
|- ( ph -> dom ( S _D G ) C_ X ) |
| 22 |
1 2 3 4 5 6 7
|
ulmdvlem3 |
|- ( ( ph /\ z e. X ) -> z ( S _D G ) ( H ` z ) ) |
| 23 |
|
vex |
|- z e. _V |
| 24 |
|
fvex |
|- ( H ` z ) e. _V |
| 25 |
23 24
|
breldm |
|- ( z ( S _D G ) ( H ` z ) -> z e. dom ( S _D G ) ) |
| 26 |
22 25
|
syl |
|- ( ( ph /\ z e. X ) -> z e. dom ( S _D G ) ) |
| 27 |
21 26
|
eqelssd |
|- ( ph -> dom ( S _D G ) = X ) |
| 28 |
27
|
feq2d |
|- ( ph -> ( ( S _D G ) : dom ( S _D G ) --> CC <-> ( S _D G ) : X --> CC ) ) |
| 29 |
9 28
|
mpbid |
|- ( ph -> ( S _D G ) : X --> CC ) |
| 30 |
29
|
ffnd |
|- ( ph -> ( S _D G ) Fn X ) |
| 31 |
|
ulmcl |
|- ( ( k e. Z |-> ( S _D ( F ` k ) ) ) ( ~~>u ` X ) H -> H : X --> CC ) |
| 32 |
7 31
|
syl |
|- ( ph -> H : X --> CC ) |
| 33 |
32
|
ffnd |
|- ( ph -> H Fn X ) |
| 34 |
9
|
ffund |
|- ( ph -> Fun ( S _D G ) ) |
| 35 |
34
|
adantr |
|- ( ( ph /\ z e. X ) -> Fun ( S _D G ) ) |
| 36 |
|
funbrfv |
|- ( Fun ( S _D G ) -> ( z ( S _D G ) ( H ` z ) -> ( ( S _D G ) ` z ) = ( H ` z ) ) ) |
| 37 |
35 22 36
|
sylc |
|- ( ( ph /\ z e. X ) -> ( ( S _D G ) ` z ) = ( H ` z ) ) |
| 38 |
30 33 37
|
eqfnfvd |
|- ( ph -> ( S _D G ) = H ) |