Description: The union of the class of transfinite cardinals (the range of the aleph function) is the class of ordinal numbers. (Contributed by NM, 11-Nov-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unialeph | |- U. ran aleph = On | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | alephprc | |- -. ran aleph e. _V | |
| 2 | uniexb | |- ( ran aleph e. _V <-> U. ran aleph e. _V ) | |
| 3 | 1 2 | mtbi | |- -. U. ran aleph e. _V | 
| 4 | elex | |- ( U. ran aleph e. On -> U. ran aleph e. _V ) | |
| 5 | 3 4 | mto | |- -. U. ran aleph e. On | 
| 6 | alephsson | |- ran aleph C_ On | |
| 7 | ssorduni | |- ( ran aleph C_ On -> Ord U. ran aleph ) | |
| 8 | 6 7 | ax-mp | |- Ord U. ran aleph | 
| 9 | ordeleqon | |- ( Ord U. ran aleph <-> ( U. ran aleph e. On \/ U. ran aleph = On ) ) | |
| 10 | 8 9 | mpbi | |- ( U. ran aleph e. On \/ U. ran aleph = On ) | 
| 11 | 5 10 | mtpor | |- U. ran aleph = On |