| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isupgr.v |
|- V = ( Vtx ` G ) |
| 2 |
|
isupgr.e |
|- E = ( iEdg ` G ) |
| 3 |
1 2
|
upgrle |
|- ( ( G e. UPGraph /\ E Fn A /\ F e. A ) -> ( # ` ( E ` F ) ) <_ 2 ) |
| 4 |
|
2re |
|- 2 e. RR |
| 5 |
|
ltpnf |
|- ( 2 e. RR -> 2 < +oo ) |
| 6 |
4 5
|
ax-mp |
|- 2 < +oo |
| 7 |
4
|
rexri |
|- 2 e. RR* |
| 8 |
|
pnfxr |
|- +oo e. RR* |
| 9 |
|
xrltnle |
|- ( ( 2 e. RR* /\ +oo e. RR* ) -> ( 2 < +oo <-> -. +oo <_ 2 ) ) |
| 10 |
7 8 9
|
mp2an |
|- ( 2 < +oo <-> -. +oo <_ 2 ) |
| 11 |
6 10
|
mpbi |
|- -. +oo <_ 2 |
| 12 |
|
fvex |
|- ( E ` F ) e. _V |
| 13 |
|
hashinf |
|- ( ( ( E ` F ) e. _V /\ -. ( E ` F ) e. Fin ) -> ( # ` ( E ` F ) ) = +oo ) |
| 14 |
12 13
|
mpan |
|- ( -. ( E ` F ) e. Fin -> ( # ` ( E ` F ) ) = +oo ) |
| 15 |
14
|
breq1d |
|- ( -. ( E ` F ) e. Fin -> ( ( # ` ( E ` F ) ) <_ 2 <-> +oo <_ 2 ) ) |
| 16 |
11 15
|
mtbiri |
|- ( -. ( E ` F ) e. Fin -> -. ( # ` ( E ` F ) ) <_ 2 ) |
| 17 |
16
|
con4i |
|- ( ( # ` ( E ` F ) ) <_ 2 -> ( E ` F ) e. Fin ) |
| 18 |
3 17
|
syl |
|- ( ( G e. UPGraph /\ E Fn A /\ F e. A ) -> ( E ` F ) e. Fin ) |