| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isupgr.v |
|- V = ( Vtx ` G ) |
| 2 |
|
isupgr.e |
|- E = ( iEdg ` G ) |
| 3 |
1 2
|
upgrn0 |
|- ( ( G e. UPGraph /\ E Fn A /\ F e. A ) -> ( E ` F ) =/= (/) ) |
| 4 |
|
n0 |
|- ( ( E ` F ) =/= (/) <-> E. x x e. ( E ` F ) ) |
| 5 |
3 4
|
sylib |
|- ( ( G e. UPGraph /\ E Fn A /\ F e. A ) -> E. x x e. ( E ` F ) ) |
| 6 |
|
simp1 |
|- ( ( G e. UPGraph /\ E Fn A /\ F e. A ) -> G e. UPGraph ) |
| 7 |
|
fndm |
|- ( E Fn A -> dom E = A ) |
| 8 |
7
|
eqcomd |
|- ( E Fn A -> A = dom E ) |
| 9 |
8
|
eleq2d |
|- ( E Fn A -> ( F e. A <-> F e. dom E ) ) |
| 10 |
9
|
biimpd |
|- ( E Fn A -> ( F e. A -> F e. dom E ) ) |
| 11 |
10
|
a1i |
|- ( G e. UPGraph -> ( E Fn A -> ( F e. A -> F e. dom E ) ) ) |
| 12 |
11
|
3imp |
|- ( ( G e. UPGraph /\ E Fn A /\ F e. A ) -> F e. dom E ) |
| 13 |
1 2
|
upgrss |
|- ( ( G e. UPGraph /\ F e. dom E ) -> ( E ` F ) C_ V ) |
| 14 |
6 12 13
|
syl2anc |
|- ( ( G e. UPGraph /\ E Fn A /\ F e. A ) -> ( E ` F ) C_ V ) |
| 15 |
14
|
sselda |
|- ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ x e. ( E ` F ) ) -> x e. V ) |
| 16 |
15
|
adantr |
|- ( ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ x e. ( E ` F ) ) /\ ( ( E ` F ) \ { x } ) = (/) ) -> x e. V ) |
| 17 |
|
simpr |
|- ( ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ x e. ( E ` F ) ) /\ ( ( E ` F ) \ { x } ) = (/) ) -> ( ( E ` F ) \ { x } ) = (/) ) |
| 18 |
|
ssdif0 |
|- ( ( E ` F ) C_ { x } <-> ( ( E ` F ) \ { x } ) = (/) ) |
| 19 |
17 18
|
sylibr |
|- ( ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ x e. ( E ` F ) ) /\ ( ( E ` F ) \ { x } ) = (/) ) -> ( E ` F ) C_ { x } ) |
| 20 |
|
simpr |
|- ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ x e. ( E ` F ) ) -> x e. ( E ` F ) ) |
| 21 |
20
|
snssd |
|- ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ x e. ( E ` F ) ) -> { x } C_ ( E ` F ) ) |
| 22 |
21
|
adantr |
|- ( ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ x e. ( E ` F ) ) /\ ( ( E ` F ) \ { x } ) = (/) ) -> { x } C_ ( E ` F ) ) |
| 23 |
19 22
|
eqssd |
|- ( ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ x e. ( E ` F ) ) /\ ( ( E ` F ) \ { x } ) = (/) ) -> ( E ` F ) = { x } ) |
| 24 |
|
preq2 |
|- ( y = x -> { x , y } = { x , x } ) |
| 25 |
|
dfsn2 |
|- { x } = { x , x } |
| 26 |
24 25
|
eqtr4di |
|- ( y = x -> { x , y } = { x } ) |
| 27 |
26
|
rspceeqv |
|- ( ( x e. V /\ ( E ` F ) = { x } ) -> E. y e. V ( E ` F ) = { x , y } ) |
| 28 |
16 23 27
|
syl2anc |
|- ( ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ x e. ( E ` F ) ) /\ ( ( E ` F ) \ { x } ) = (/) ) -> E. y e. V ( E ` F ) = { x , y } ) |
| 29 |
|
n0 |
|- ( ( ( E ` F ) \ { x } ) =/= (/) <-> E. y y e. ( ( E ` F ) \ { x } ) ) |
| 30 |
14
|
adantr |
|- ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ ( x e. ( E ` F ) /\ y e. ( ( E ` F ) \ { x } ) ) ) -> ( E ` F ) C_ V ) |
| 31 |
|
simprr |
|- ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ ( x e. ( E ` F ) /\ y e. ( ( E ` F ) \ { x } ) ) ) -> y e. ( ( E ` F ) \ { x } ) ) |
| 32 |
31
|
eldifad |
|- ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ ( x e. ( E ` F ) /\ y e. ( ( E ` F ) \ { x } ) ) ) -> y e. ( E ` F ) ) |
| 33 |
30 32
|
sseldd |
|- ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ ( x e. ( E ` F ) /\ y e. ( ( E ` F ) \ { x } ) ) ) -> y e. V ) |
| 34 |
1 2
|
upgrfi |
|- ( ( G e. UPGraph /\ E Fn A /\ F e. A ) -> ( E ` F ) e. Fin ) |
| 35 |
34
|
adantr |
|- ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ ( x e. ( E ` F ) /\ y e. ( ( E ` F ) \ { x } ) ) ) -> ( E ` F ) e. Fin ) |
| 36 |
|
simprl |
|- ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ ( x e. ( E ` F ) /\ y e. ( ( E ` F ) \ { x } ) ) ) -> x e. ( E ` F ) ) |
| 37 |
36 32
|
prssd |
|- ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ ( x e. ( E ` F ) /\ y e. ( ( E ` F ) \ { x } ) ) ) -> { x , y } C_ ( E ` F ) ) |
| 38 |
|
fvex |
|- ( E ` F ) e. _V |
| 39 |
|
ssdomg |
|- ( ( E ` F ) e. _V -> ( { x , y } C_ ( E ` F ) -> { x , y } ~<_ ( E ` F ) ) ) |
| 40 |
38 37 39
|
mpsyl |
|- ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ ( x e. ( E ` F ) /\ y e. ( ( E ` F ) \ { x } ) ) ) -> { x , y } ~<_ ( E ` F ) ) |
| 41 |
1 2
|
upgrle |
|- ( ( G e. UPGraph /\ E Fn A /\ F e. A ) -> ( # ` ( E ` F ) ) <_ 2 ) |
| 42 |
41
|
adantr |
|- ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ ( x e. ( E ` F ) /\ y e. ( ( E ` F ) \ { x } ) ) ) -> ( # ` ( E ` F ) ) <_ 2 ) |
| 43 |
|
eldifsni |
|- ( y e. ( ( E ` F ) \ { x } ) -> y =/= x ) |
| 44 |
43
|
ad2antll |
|- ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ ( x e. ( E ` F ) /\ y e. ( ( E ` F ) \ { x } ) ) ) -> y =/= x ) |
| 45 |
44
|
necomd |
|- ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ ( x e. ( E ` F ) /\ y e. ( ( E ` F ) \ { x } ) ) ) -> x =/= y ) |
| 46 |
|
hashprg |
|- ( ( x e. _V /\ y e. _V ) -> ( x =/= y <-> ( # ` { x , y } ) = 2 ) ) |
| 47 |
46
|
el2v |
|- ( x =/= y <-> ( # ` { x , y } ) = 2 ) |
| 48 |
45 47
|
sylib |
|- ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ ( x e. ( E ` F ) /\ y e. ( ( E ` F ) \ { x } ) ) ) -> ( # ` { x , y } ) = 2 ) |
| 49 |
42 48
|
breqtrrd |
|- ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ ( x e. ( E ` F ) /\ y e. ( ( E ` F ) \ { x } ) ) ) -> ( # ` ( E ` F ) ) <_ ( # ` { x , y } ) ) |
| 50 |
|
prfi |
|- { x , y } e. Fin |
| 51 |
|
hashdom |
|- ( ( ( E ` F ) e. Fin /\ { x , y } e. Fin ) -> ( ( # ` ( E ` F ) ) <_ ( # ` { x , y } ) <-> ( E ` F ) ~<_ { x , y } ) ) |
| 52 |
35 50 51
|
sylancl |
|- ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ ( x e. ( E ` F ) /\ y e. ( ( E ` F ) \ { x } ) ) ) -> ( ( # ` ( E ` F ) ) <_ ( # ` { x , y } ) <-> ( E ` F ) ~<_ { x , y } ) ) |
| 53 |
49 52
|
mpbid |
|- ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ ( x e. ( E ` F ) /\ y e. ( ( E ` F ) \ { x } ) ) ) -> ( E ` F ) ~<_ { x , y } ) |
| 54 |
|
sbth |
|- ( ( { x , y } ~<_ ( E ` F ) /\ ( E ` F ) ~<_ { x , y } ) -> { x , y } ~~ ( E ` F ) ) |
| 55 |
40 53 54
|
syl2anc |
|- ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ ( x e. ( E ` F ) /\ y e. ( ( E ` F ) \ { x } ) ) ) -> { x , y } ~~ ( E ` F ) ) |
| 56 |
|
fisseneq |
|- ( ( ( E ` F ) e. Fin /\ { x , y } C_ ( E ` F ) /\ { x , y } ~~ ( E ` F ) ) -> { x , y } = ( E ` F ) ) |
| 57 |
35 37 55 56
|
syl3anc |
|- ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ ( x e. ( E ` F ) /\ y e. ( ( E ` F ) \ { x } ) ) ) -> { x , y } = ( E ` F ) ) |
| 58 |
57
|
eqcomd |
|- ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ ( x e. ( E ` F ) /\ y e. ( ( E ` F ) \ { x } ) ) ) -> ( E ` F ) = { x , y } ) |
| 59 |
33 58
|
jca |
|- ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ ( x e. ( E ` F ) /\ y e. ( ( E ` F ) \ { x } ) ) ) -> ( y e. V /\ ( E ` F ) = { x , y } ) ) |
| 60 |
59
|
expr |
|- ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ x e. ( E ` F ) ) -> ( y e. ( ( E ` F ) \ { x } ) -> ( y e. V /\ ( E ` F ) = { x , y } ) ) ) |
| 61 |
60
|
eximdv |
|- ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ x e. ( E ` F ) ) -> ( E. y y e. ( ( E ` F ) \ { x } ) -> E. y ( y e. V /\ ( E ` F ) = { x , y } ) ) ) |
| 62 |
61
|
imp |
|- ( ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ x e. ( E ` F ) ) /\ E. y y e. ( ( E ` F ) \ { x } ) ) -> E. y ( y e. V /\ ( E ` F ) = { x , y } ) ) |
| 63 |
|
df-rex |
|- ( E. y e. V ( E ` F ) = { x , y } <-> E. y ( y e. V /\ ( E ` F ) = { x , y } ) ) |
| 64 |
62 63
|
sylibr |
|- ( ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ x e. ( E ` F ) ) /\ E. y y e. ( ( E ` F ) \ { x } ) ) -> E. y e. V ( E ` F ) = { x , y } ) |
| 65 |
29 64
|
sylan2b |
|- ( ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ x e. ( E ` F ) ) /\ ( ( E ` F ) \ { x } ) =/= (/) ) -> E. y e. V ( E ` F ) = { x , y } ) |
| 66 |
28 65
|
pm2.61dane |
|- ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ x e. ( E ` F ) ) -> E. y e. V ( E ` F ) = { x , y } ) |
| 67 |
15 66
|
jca |
|- ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ x e. ( E ` F ) ) -> ( x e. V /\ E. y e. V ( E ` F ) = { x , y } ) ) |
| 68 |
67
|
ex |
|- ( ( G e. UPGraph /\ E Fn A /\ F e. A ) -> ( x e. ( E ` F ) -> ( x e. V /\ E. y e. V ( E ` F ) = { x , y } ) ) ) |
| 69 |
68
|
eximdv |
|- ( ( G e. UPGraph /\ E Fn A /\ F e. A ) -> ( E. x x e. ( E ` F ) -> E. x ( x e. V /\ E. y e. V ( E ` F ) = { x , y } ) ) ) |
| 70 |
5 69
|
mpd |
|- ( ( G e. UPGraph /\ E Fn A /\ F e. A ) -> E. x ( x e. V /\ E. y e. V ( E ` F ) = { x , y } ) ) |
| 71 |
|
df-rex |
|- ( E. x e. V E. y e. V ( E ` F ) = { x , y } <-> E. x ( x e. V /\ E. y e. V ( E ` F ) = { x , y } ) ) |
| 72 |
70 71
|
sylibr |
|- ( ( G e. UPGraph /\ E Fn A /\ F e. A ) -> E. x e. V E. y e. V ( E ` F ) = { x , y } ) |