| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isupgr.v |
|
| 2 |
|
isupgr.e |
|
| 3 |
1 2
|
upgrn0 |
|
| 4 |
|
n0 |
|
| 5 |
3 4
|
sylib |
|
| 6 |
|
simp1 |
|
| 7 |
|
fndm |
|
| 8 |
7
|
eqcomd |
|
| 9 |
8
|
eleq2d |
|
| 10 |
9
|
biimpd |
|
| 11 |
10
|
a1i |
|
| 12 |
11
|
3imp |
|
| 13 |
1 2
|
upgrss |
|
| 14 |
6 12 13
|
syl2anc |
|
| 15 |
14
|
sselda |
|
| 16 |
15
|
adantr |
|
| 17 |
|
simpr |
|
| 18 |
|
ssdif0 |
|
| 19 |
17 18
|
sylibr |
|
| 20 |
|
simpr |
|
| 21 |
20
|
snssd |
|
| 22 |
21
|
adantr |
|
| 23 |
19 22
|
eqssd |
|
| 24 |
|
preq2 |
|
| 25 |
|
dfsn2 |
|
| 26 |
24 25
|
eqtr4di |
|
| 27 |
26
|
rspceeqv |
|
| 28 |
16 23 27
|
syl2anc |
|
| 29 |
|
n0 |
|
| 30 |
14
|
adantr |
|
| 31 |
|
simprr |
|
| 32 |
31
|
eldifad |
|
| 33 |
30 32
|
sseldd |
|
| 34 |
1 2
|
upgrfi |
|
| 35 |
34
|
adantr |
|
| 36 |
|
simprl |
|
| 37 |
36 32
|
prssd |
|
| 38 |
|
fvex |
|
| 39 |
|
ssdomg |
|
| 40 |
38 37 39
|
mpsyl |
|
| 41 |
1 2
|
upgrle |
|
| 42 |
41
|
adantr |
|
| 43 |
|
eldifsni |
|
| 44 |
43
|
ad2antll |
|
| 45 |
44
|
necomd |
|
| 46 |
|
hashprg |
|
| 47 |
46
|
el2v |
|
| 48 |
45 47
|
sylib |
|
| 49 |
42 48
|
breqtrrd |
|
| 50 |
|
prfi |
|
| 51 |
|
hashdom |
|
| 52 |
35 50 51
|
sylancl |
|
| 53 |
49 52
|
mpbid |
|
| 54 |
|
sbth |
|
| 55 |
40 53 54
|
syl2anc |
|
| 56 |
|
fisseneq |
|
| 57 |
35 37 55 56
|
syl3anc |
|
| 58 |
57
|
eqcomd |
|
| 59 |
33 58
|
jca |
|
| 60 |
59
|
expr |
|
| 61 |
60
|
eximdv |
|
| 62 |
61
|
imp |
|
| 63 |
|
df-rex |
|
| 64 |
62 63
|
sylibr |
|
| 65 |
29 64
|
sylan2b |
|
| 66 |
28 65
|
pm2.61dane |
|
| 67 |
15 66
|
jca |
|
| 68 |
67
|
ex |
|
| 69 |
68
|
eximdv |
|
| 70 |
5 69
|
mpd |
|
| 71 |
|
df-rex |
|
| 72 |
70 71
|
sylibr |
|