| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
| 2 |
|
eqid |
|- ( iEdg ` G ) = ( iEdg ` G ) |
| 3 |
1 2
|
upgrf |
|- ( G e. UPGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) --> { p e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` p ) <_ 2 } ) |
| 4 |
|
fvex |
|- ( Vtx ` G ) e. _V |
| 5 |
|
fvex |
|- ( iEdg ` G ) e. _V |
| 6 |
4 5
|
pm3.2i |
|- ( ( Vtx ` G ) e. _V /\ ( iEdg ` G ) e. _V ) |
| 7 |
|
opex |
|- <. ( Vtx ` G ) , ( iEdg ` G ) >. e. _V |
| 8 |
|
eqid |
|- ( Vtx ` <. ( Vtx ` G ) , ( iEdg ` G ) >. ) = ( Vtx ` <. ( Vtx ` G ) , ( iEdg ` G ) >. ) |
| 9 |
|
eqid |
|- ( iEdg ` <. ( Vtx ` G ) , ( iEdg ` G ) >. ) = ( iEdg ` <. ( Vtx ` G ) , ( iEdg ` G ) >. ) |
| 10 |
8 9
|
isupgr |
|- ( <. ( Vtx ` G ) , ( iEdg ` G ) >. e. _V -> ( <. ( Vtx ` G ) , ( iEdg ` G ) >. e. UPGraph <-> ( iEdg ` <. ( Vtx ` G ) , ( iEdg ` G ) >. ) : dom ( iEdg ` <. ( Vtx ` G ) , ( iEdg ` G ) >. ) --> { p e. ( ~P ( Vtx ` <. ( Vtx ` G ) , ( iEdg ` G ) >. ) \ { (/) } ) | ( # ` p ) <_ 2 } ) ) |
| 11 |
7 10
|
mp1i |
|- ( ( ( Vtx ` G ) e. _V /\ ( iEdg ` G ) e. _V ) -> ( <. ( Vtx ` G ) , ( iEdg ` G ) >. e. UPGraph <-> ( iEdg ` <. ( Vtx ` G ) , ( iEdg ` G ) >. ) : dom ( iEdg ` <. ( Vtx ` G ) , ( iEdg ` G ) >. ) --> { p e. ( ~P ( Vtx ` <. ( Vtx ` G ) , ( iEdg ` G ) >. ) \ { (/) } ) | ( # ` p ) <_ 2 } ) ) |
| 12 |
|
opiedgfv |
|- ( ( ( Vtx ` G ) e. _V /\ ( iEdg ` G ) e. _V ) -> ( iEdg ` <. ( Vtx ` G ) , ( iEdg ` G ) >. ) = ( iEdg ` G ) ) |
| 13 |
12
|
dmeqd |
|- ( ( ( Vtx ` G ) e. _V /\ ( iEdg ` G ) e. _V ) -> dom ( iEdg ` <. ( Vtx ` G ) , ( iEdg ` G ) >. ) = dom ( iEdg ` G ) ) |
| 14 |
|
opvtxfv |
|- ( ( ( Vtx ` G ) e. _V /\ ( iEdg ` G ) e. _V ) -> ( Vtx ` <. ( Vtx ` G ) , ( iEdg ` G ) >. ) = ( Vtx ` G ) ) |
| 15 |
14
|
pweqd |
|- ( ( ( Vtx ` G ) e. _V /\ ( iEdg ` G ) e. _V ) -> ~P ( Vtx ` <. ( Vtx ` G ) , ( iEdg ` G ) >. ) = ~P ( Vtx ` G ) ) |
| 16 |
15
|
difeq1d |
|- ( ( ( Vtx ` G ) e. _V /\ ( iEdg ` G ) e. _V ) -> ( ~P ( Vtx ` <. ( Vtx ` G ) , ( iEdg ` G ) >. ) \ { (/) } ) = ( ~P ( Vtx ` G ) \ { (/) } ) ) |
| 17 |
16
|
rabeqdv |
|- ( ( ( Vtx ` G ) e. _V /\ ( iEdg ` G ) e. _V ) -> { p e. ( ~P ( Vtx ` <. ( Vtx ` G ) , ( iEdg ` G ) >. ) \ { (/) } ) | ( # ` p ) <_ 2 } = { p e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` p ) <_ 2 } ) |
| 18 |
12 13 17
|
feq123d |
|- ( ( ( Vtx ` G ) e. _V /\ ( iEdg ` G ) e. _V ) -> ( ( iEdg ` <. ( Vtx ` G ) , ( iEdg ` G ) >. ) : dom ( iEdg ` <. ( Vtx ` G ) , ( iEdg ` G ) >. ) --> { p e. ( ~P ( Vtx ` <. ( Vtx ` G ) , ( iEdg ` G ) >. ) \ { (/) } ) | ( # ` p ) <_ 2 } <-> ( iEdg ` G ) : dom ( iEdg ` G ) --> { p e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` p ) <_ 2 } ) ) |
| 19 |
11 18
|
bitrd |
|- ( ( ( Vtx ` G ) e. _V /\ ( iEdg ` G ) e. _V ) -> ( <. ( Vtx ` G ) , ( iEdg ` G ) >. e. UPGraph <-> ( iEdg ` G ) : dom ( iEdg ` G ) --> { p e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` p ) <_ 2 } ) ) |
| 20 |
6 19
|
mp1i |
|- ( G e. UPGraph -> ( <. ( Vtx ` G ) , ( iEdg ` G ) >. e. UPGraph <-> ( iEdg ` G ) : dom ( iEdg ` G ) --> { p e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` p ) <_ 2 } ) ) |
| 21 |
3 20
|
mpbird |
|- ( G e. UPGraph -> <. ( Vtx ` G ) , ( iEdg ` G ) >. e. UPGraph ) |