| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
| 2 |
|
eqid |
|- ( iEdg ` G ) = ( iEdg ` G ) |
| 3 |
1 2
|
upwlkbprop |
|- ( F ( UPWalks ` G ) P -> ( G e. _V /\ F e. _V /\ P e. _V ) ) |
| 4 |
|
idd |
|- ( ( G e. _V /\ F e. _V /\ P e. _V ) -> ( F e. Word dom ( iEdg ` G ) -> F e. Word dom ( iEdg ` G ) ) ) |
| 5 |
|
idd |
|- ( ( G e. _V /\ F e. _V /\ P e. _V ) -> ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) ) |
| 6 |
|
ifpprsnss |
|- ( ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } -> if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) ) |
| 7 |
6
|
a1i |
|- ( ( ( G e. _V /\ F e. _V /\ P e. _V ) /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } -> if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) ) ) |
| 8 |
7
|
ralimdva |
|- ( ( G e. _V /\ F e. _V /\ P e. _V ) -> ( A. k e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } -> A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) ) ) |
| 9 |
4 5 8
|
3anim123d |
|- ( ( G e. _V /\ F e. _V /\ P e. _V ) -> ( ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. k e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) -> ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) ) ) ) |
| 10 |
1 2
|
isupwlk |
|- ( ( G e. _V /\ F e. _V /\ P e. _V ) -> ( F ( UPWalks ` G ) P <-> ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. k e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) ) |
| 11 |
1 2
|
iswlk |
|- ( ( G e. _V /\ F e. _V /\ P e. _V ) -> ( F ( Walks ` G ) P <-> ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) ) ) ) |
| 12 |
9 10 11
|
3imtr4d |
|- ( ( G e. _V /\ F e. _V /\ P e. _V ) -> ( F ( UPWalks ` G ) P -> F ( Walks ` G ) P ) ) |
| 13 |
3 12
|
mpcom |
|- ( F ( UPWalks ` G ) P -> F ( Walks ` G ) P ) |