| Step | Hyp | Ref | Expression | 
						
							| 1 |  | upwlksfval.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | upwlksfval.i |  |-  I = ( iEdg ` G ) | 
						
							| 3 | 1 2 | upwlksfval |  |-  ( G e. _V -> ( UPWalks ` G ) = { <. f , p >. | ( f e. Word dom I /\ p : ( 0 ... ( # ` f ) ) --> V /\ A. k e. ( 0 ..^ ( # ` f ) ) ( I ` ( f ` k ) ) = { ( p ` k ) , ( p ` ( k + 1 ) ) } ) } ) | 
						
							| 4 | 3 | breqd |  |-  ( G e. _V -> ( F ( UPWalks ` G ) P <-> F { <. f , p >. | ( f e. Word dom I /\ p : ( 0 ... ( # ` f ) ) --> V /\ A. k e. ( 0 ..^ ( # ` f ) ) ( I ` ( f ` k ) ) = { ( p ` k ) , ( p ` ( k + 1 ) ) } ) } P ) ) | 
						
							| 5 |  | brabv |  |-  ( F { <. f , p >. | ( f e. Word dom I /\ p : ( 0 ... ( # ` f ) ) --> V /\ A. k e. ( 0 ..^ ( # ` f ) ) ( I ` ( f ` k ) ) = { ( p ` k ) , ( p ` ( k + 1 ) ) } ) } P -> ( F e. _V /\ P e. _V ) ) | 
						
							| 6 | 4 5 | biimtrdi |  |-  ( G e. _V -> ( F ( UPWalks ` G ) P -> ( F e. _V /\ P e. _V ) ) ) | 
						
							| 7 | 6 | imdistani |  |-  ( ( G e. _V /\ F ( UPWalks ` G ) P ) -> ( G e. _V /\ ( F e. _V /\ P e. _V ) ) ) | 
						
							| 8 |  | 3anass |  |-  ( ( G e. _V /\ F e. _V /\ P e. _V ) <-> ( G e. _V /\ ( F e. _V /\ P e. _V ) ) ) | 
						
							| 9 | 7 8 | sylibr |  |-  ( ( G e. _V /\ F ( UPWalks ` G ) P ) -> ( G e. _V /\ F e. _V /\ P e. _V ) ) | 
						
							| 10 | 9 | ex |  |-  ( G e. _V -> ( F ( UPWalks ` G ) P -> ( G e. _V /\ F e. _V /\ P e. _V ) ) ) | 
						
							| 11 |  | fvprc |  |-  ( -. G e. _V -> ( UPWalks ` G ) = (/) ) | 
						
							| 12 |  | breq |  |-  ( ( UPWalks ` G ) = (/) -> ( F ( UPWalks ` G ) P <-> F (/) P ) ) | 
						
							| 13 |  | br0 |  |-  -. F (/) P | 
						
							| 14 | 13 | pm2.21i |  |-  ( F (/) P -> ( G e. _V /\ F e. _V /\ P e. _V ) ) | 
						
							| 15 | 12 14 | biimtrdi |  |-  ( ( UPWalks ` G ) = (/) -> ( F ( UPWalks ` G ) P -> ( G e. _V /\ F e. _V /\ P e. _V ) ) ) | 
						
							| 16 | 11 15 | syl |  |-  ( -. G e. _V -> ( F ( UPWalks ` G ) P -> ( G e. _V /\ F e. _V /\ P e. _V ) ) ) | 
						
							| 17 | 10 16 | pm2.61i |  |-  ( F ( UPWalks ` G ) P -> ( G e. _V /\ F e. _V /\ P e. _V ) ) |