| Step | Hyp | Ref | Expression | 
						
							| 1 |  | upwlksfval.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | upwlksfval.i | ⊢ 𝐼  =  ( iEdg ‘ 𝐺 ) | 
						
							| 3 | 1 2 | upwlksfval | ⊢ ( 𝐺  ∈  V  →  ( UPWalks ‘ 𝐺 )  =  { 〈 𝑓 ,  𝑝 〉  ∣  ( 𝑓  ∈  Word  dom  𝐼  ∧  𝑝 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉  ∧  ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) )  =  { ( 𝑝 ‘ 𝑘 ) ,  ( 𝑝 ‘ ( 𝑘  +  1 ) ) } ) } ) | 
						
							| 4 | 3 | breqd | ⊢ ( 𝐺  ∈  V  →  ( 𝐹 ( UPWalks ‘ 𝐺 ) 𝑃  ↔  𝐹 { 〈 𝑓 ,  𝑝 〉  ∣  ( 𝑓  ∈  Word  dom  𝐼  ∧  𝑝 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉  ∧  ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) )  =  { ( 𝑝 ‘ 𝑘 ) ,  ( 𝑝 ‘ ( 𝑘  +  1 ) ) } ) } 𝑃 ) ) | 
						
							| 5 |  | brabv | ⊢ ( 𝐹 { 〈 𝑓 ,  𝑝 〉  ∣  ( 𝑓  ∈  Word  dom  𝐼  ∧  𝑝 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉  ∧  ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) )  =  { ( 𝑝 ‘ 𝑘 ) ,  ( 𝑝 ‘ ( 𝑘  +  1 ) ) } ) } 𝑃  →  ( 𝐹  ∈  V  ∧  𝑃  ∈  V ) ) | 
						
							| 6 | 4 5 | biimtrdi | ⊢ ( 𝐺  ∈  V  →  ( 𝐹 ( UPWalks ‘ 𝐺 ) 𝑃  →  ( 𝐹  ∈  V  ∧  𝑃  ∈  V ) ) ) | 
						
							| 7 | 6 | imdistani | ⊢ ( ( 𝐺  ∈  V  ∧  𝐹 ( UPWalks ‘ 𝐺 ) 𝑃 )  →  ( 𝐺  ∈  V  ∧  ( 𝐹  ∈  V  ∧  𝑃  ∈  V ) ) ) | 
						
							| 8 |  | 3anass | ⊢ ( ( 𝐺  ∈  V  ∧  𝐹  ∈  V  ∧  𝑃  ∈  V )  ↔  ( 𝐺  ∈  V  ∧  ( 𝐹  ∈  V  ∧  𝑃  ∈  V ) ) ) | 
						
							| 9 | 7 8 | sylibr | ⊢ ( ( 𝐺  ∈  V  ∧  𝐹 ( UPWalks ‘ 𝐺 ) 𝑃 )  →  ( 𝐺  ∈  V  ∧  𝐹  ∈  V  ∧  𝑃  ∈  V ) ) | 
						
							| 10 | 9 | ex | ⊢ ( 𝐺  ∈  V  →  ( 𝐹 ( UPWalks ‘ 𝐺 ) 𝑃  →  ( 𝐺  ∈  V  ∧  𝐹  ∈  V  ∧  𝑃  ∈  V ) ) ) | 
						
							| 11 |  | fvprc | ⊢ ( ¬  𝐺  ∈  V  →  ( UPWalks ‘ 𝐺 )  =  ∅ ) | 
						
							| 12 |  | breq | ⊢ ( ( UPWalks ‘ 𝐺 )  =  ∅  →  ( 𝐹 ( UPWalks ‘ 𝐺 ) 𝑃  ↔  𝐹 ∅ 𝑃 ) ) | 
						
							| 13 |  | br0 | ⊢ ¬  𝐹 ∅ 𝑃 | 
						
							| 14 | 13 | pm2.21i | ⊢ ( 𝐹 ∅ 𝑃  →  ( 𝐺  ∈  V  ∧  𝐹  ∈  V  ∧  𝑃  ∈  V ) ) | 
						
							| 15 | 12 14 | biimtrdi | ⊢ ( ( UPWalks ‘ 𝐺 )  =  ∅  →  ( 𝐹 ( UPWalks ‘ 𝐺 ) 𝑃  →  ( 𝐺  ∈  V  ∧  𝐹  ∈  V  ∧  𝑃  ∈  V ) ) ) | 
						
							| 16 | 11 15 | syl | ⊢ ( ¬  𝐺  ∈  V  →  ( 𝐹 ( UPWalks ‘ 𝐺 ) 𝑃  →  ( 𝐺  ∈  V  ∧  𝐹  ∈  V  ∧  𝑃  ∈  V ) ) ) | 
						
							| 17 | 10 16 | pm2.61i | ⊢ ( 𝐹 ( UPWalks ‘ 𝐺 ) 𝑃  →  ( 𝐺  ∈  V  ∧  𝐹  ∈  V  ∧  𝑃  ∈  V ) ) |