Metamath Proof Explorer


Theorem upwlkbprop

Description: Basic properties of a simple walk. (Contributed by Alexander van der Vekens, 31-Oct-2017) (Revised by AV, 29-Dec-2020)

Ref Expression
Hypotheses upwlksfval.v V=VtxG
upwlksfval.i I=iEdgG
Assertion upwlkbprop FUPWalksGPGVFVPV

Proof

Step Hyp Ref Expression
1 upwlksfval.v V=VtxG
2 upwlksfval.i I=iEdgG
3 1 2 upwlksfval GVUPWalksG=fp|fWorddomIp:0fVk0..^fIfk=pkpk+1
4 3 breqd GVFUPWalksGPFfp|fWorddomIp:0fVk0..^fIfk=pkpk+1P
5 brabv Ffp|fWorddomIp:0fVk0..^fIfk=pkpk+1PFVPV
6 4 5 syl6bi GVFUPWalksGPFVPV
7 6 imdistani GVFUPWalksGPGVFVPV
8 3anass GVFVPVGVFVPV
9 7 8 sylibr GVFUPWalksGPGVFVPV
10 9 ex GVFUPWalksGPGVFVPV
11 fvprc ¬GVUPWalksG=
12 breq UPWalksG=FUPWalksGPFP
13 br0 ¬FP
14 13 pm2.21i FPGVFVPV
15 12 14 syl6bi UPWalksG=FUPWalksGPGVFVPV
16 11 15 syl ¬GVFUPWalksGPGVFVPV
17 10 16 pm2.61i FUPWalksGPGVFVPV