| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid | ⊢ ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | eqid | ⊢ ( iEdg ‘ 𝐺 )  =  ( iEdg ‘ 𝐺 ) | 
						
							| 3 | 1 2 | upwlkbprop | ⊢ ( 𝐹 ( UPWalks ‘ 𝐺 ) 𝑃  →  ( 𝐺  ∈  V  ∧  𝐹  ∈  V  ∧  𝑃  ∈  V ) ) | 
						
							| 4 |  | idd | ⊢ ( ( 𝐺  ∈  V  ∧  𝐹  ∈  V  ∧  𝑃  ∈  V )  →  ( 𝐹  ∈  Word  dom  ( iEdg ‘ 𝐺 )  →  𝐹  ∈  Word  dom  ( iEdg ‘ 𝐺 ) ) ) | 
						
							| 5 |  | idd | ⊢ ( ( 𝐺  ∈  V  ∧  𝐹  ∈  V  ∧  𝑃  ∈  V )  →  ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  →  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ) ) | 
						
							| 6 |  | ifpprsnss | ⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) )  =  { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  →  if- ( ( 𝑃 ‘ 𝑘 )  =  ( 𝑃 ‘ ( 𝑘  +  1 ) ) ,  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) )  =  { ( 𝑃 ‘ 𝑘 ) } ,  { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  ⊆  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) | 
						
							| 7 | 6 | a1i | ⊢ ( ( ( 𝐺  ∈  V  ∧  𝐹  ∈  V  ∧  𝑃  ∈  V )  ∧  𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) )  =  { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  →  if- ( ( 𝑃 ‘ 𝑘 )  =  ( 𝑃 ‘ ( 𝑘  +  1 ) ) ,  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) )  =  { ( 𝑃 ‘ 𝑘 ) } ,  { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  ⊆  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) | 
						
							| 8 | 7 | ralimdva | ⊢ ( ( 𝐺  ∈  V  ∧  𝐹  ∈  V  ∧  𝑃  ∈  V )  →  ( ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) )  =  { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  →  ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 )  =  ( 𝑃 ‘ ( 𝑘  +  1 ) ) ,  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) )  =  { ( 𝑃 ‘ 𝑘 ) } ,  { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  ⊆  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) | 
						
							| 9 | 4 5 8 | 3anim123d | ⊢ ( ( 𝐺  ∈  V  ∧  𝐹  ∈  V  ∧  𝑃  ∈  V )  →  ( ( 𝐹  ∈  Word  dom  ( iEdg ‘ 𝐺 )  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) )  =  { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) } )  →  ( 𝐹  ∈  Word  dom  ( iEdg ‘ 𝐺 )  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 )  =  ( 𝑃 ‘ ( 𝑘  +  1 ) ) ,  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) )  =  { ( 𝑃 ‘ 𝑘 ) } ,  { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  ⊆  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) | 
						
							| 10 | 1 2 | isupwlk | ⊢ ( ( 𝐺  ∈  V  ∧  𝐹  ∈  V  ∧  𝑃  ∈  V )  →  ( 𝐹 ( UPWalks ‘ 𝐺 ) 𝑃  ↔  ( 𝐹  ∈  Word  dom  ( iEdg ‘ 𝐺 )  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) )  =  { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) } ) ) ) | 
						
							| 11 | 1 2 | iswlk | ⊢ ( ( 𝐺  ∈  V  ∧  𝐹  ∈  V  ∧  𝑃  ∈  V )  →  ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  ↔  ( 𝐹  ∈  Word  dom  ( iEdg ‘ 𝐺 )  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 )  ∧  ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 )  =  ( 𝑃 ‘ ( 𝑘  +  1 ) ) ,  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) )  =  { ( 𝑃 ‘ 𝑘 ) } ,  { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) }  ⊆  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) | 
						
							| 12 | 9 10 11 | 3imtr4d | ⊢ ( ( 𝐺  ∈  V  ∧  𝐹  ∈  V  ∧  𝑃  ∈  V )  →  ( 𝐹 ( UPWalks ‘ 𝐺 ) 𝑃  →  𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) ) | 
						
							| 13 | 3 12 | mpcom | ⊢ ( 𝐹 ( UPWalks ‘ 𝐺 ) 𝑃  →  𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) |