| Step | Hyp | Ref | Expression | 
						
							| 1 |  | upwlksfval.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | upwlksfval.i | ⊢ 𝐼  =  ( iEdg ‘ 𝐺 ) | 
						
							| 3 |  | df-br | ⊢ ( 𝐹 ( UPWalks ‘ 𝐺 ) 𝑃  ↔  〈 𝐹 ,  𝑃 〉  ∈  ( UPWalks ‘ 𝐺 ) ) | 
						
							| 4 | 1 2 | upwlksfval | ⊢ ( 𝐺  ∈  𝑊  →  ( UPWalks ‘ 𝐺 )  =  { 〈 𝑓 ,  𝑝 〉  ∣  ( 𝑓  ∈  Word  dom  𝐼  ∧  𝑝 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉  ∧  ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) )  =  { ( 𝑝 ‘ 𝑘 ) ,  ( 𝑝 ‘ ( 𝑘  +  1 ) ) } ) } ) | 
						
							| 5 | 4 | 3ad2ant1 | ⊢ ( ( 𝐺  ∈  𝑊  ∧  𝐹  ∈  𝑈  ∧  𝑃  ∈  𝑍 )  →  ( UPWalks ‘ 𝐺 )  =  { 〈 𝑓 ,  𝑝 〉  ∣  ( 𝑓  ∈  Word  dom  𝐼  ∧  𝑝 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉  ∧  ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) )  =  { ( 𝑝 ‘ 𝑘 ) ,  ( 𝑝 ‘ ( 𝑘  +  1 ) ) } ) } ) | 
						
							| 6 | 5 | eleq2d | ⊢ ( ( 𝐺  ∈  𝑊  ∧  𝐹  ∈  𝑈  ∧  𝑃  ∈  𝑍 )  →  ( 〈 𝐹 ,  𝑃 〉  ∈  ( UPWalks ‘ 𝐺 )  ↔  〈 𝐹 ,  𝑃 〉  ∈  { 〈 𝑓 ,  𝑝 〉  ∣  ( 𝑓  ∈  Word  dom  𝐼  ∧  𝑝 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉  ∧  ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) )  =  { ( 𝑝 ‘ 𝑘 ) ,  ( 𝑝 ‘ ( 𝑘  +  1 ) ) } ) } ) ) | 
						
							| 7 | 3 6 | bitrid | ⊢ ( ( 𝐺  ∈  𝑊  ∧  𝐹  ∈  𝑈  ∧  𝑃  ∈  𝑍 )  →  ( 𝐹 ( UPWalks ‘ 𝐺 ) 𝑃  ↔  〈 𝐹 ,  𝑃 〉  ∈  { 〈 𝑓 ,  𝑝 〉  ∣  ( 𝑓  ∈  Word  dom  𝐼  ∧  𝑝 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉  ∧  ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) )  =  { ( 𝑝 ‘ 𝑘 ) ,  ( 𝑝 ‘ ( 𝑘  +  1 ) ) } ) } ) ) | 
						
							| 8 |  | eleq1 | ⊢ ( 𝑓  =  𝐹  →  ( 𝑓  ∈  Word  dom  𝐼  ↔  𝐹  ∈  Word  dom  𝐼 ) ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( 𝑓  =  𝐹  ∧  𝑝  =  𝑃 )  →  ( 𝑓  ∈  Word  dom  𝐼  ↔  𝐹  ∈  Word  dom  𝐼 ) ) | 
						
							| 10 |  | simpr | ⊢ ( ( 𝑓  =  𝐹  ∧  𝑝  =  𝑃 )  →  𝑝  =  𝑃 ) | 
						
							| 11 |  | fveq2 | ⊢ ( 𝑓  =  𝐹  →  ( ♯ ‘ 𝑓 )  =  ( ♯ ‘ 𝐹 ) ) | 
						
							| 12 | 11 | oveq2d | ⊢ ( 𝑓  =  𝐹  →  ( 0 ... ( ♯ ‘ 𝑓 ) )  =  ( 0 ... ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( 𝑓  =  𝐹  ∧  𝑝  =  𝑃 )  →  ( 0 ... ( ♯ ‘ 𝑓 ) )  =  ( 0 ... ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 14 | 10 13 | feq12d | ⊢ ( ( 𝑓  =  𝐹  ∧  𝑝  =  𝑃 )  →  ( 𝑝 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉  ↔  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) ) | 
						
							| 15 | 11 | oveq2d | ⊢ ( 𝑓  =  𝐹  →  ( 0 ..^ ( ♯ ‘ 𝑓 ) )  =  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 16 | 15 | adantr | ⊢ ( ( 𝑓  =  𝐹  ∧  𝑝  =  𝑃 )  →  ( 0 ..^ ( ♯ ‘ 𝑓 ) )  =  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 17 |  | fveq1 | ⊢ ( 𝑓  =  𝐹  →  ( 𝑓 ‘ 𝑘 )  =  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 18 | 17 | fveq2d | ⊢ ( 𝑓  =  𝐹  →  ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) )  =  ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 19 |  | fveq1 | ⊢ ( 𝑝  =  𝑃  →  ( 𝑝 ‘ 𝑘 )  =  ( 𝑃 ‘ 𝑘 ) ) | 
						
							| 20 |  | fveq1 | ⊢ ( 𝑝  =  𝑃  →  ( 𝑝 ‘ ( 𝑘  +  1 ) )  =  ( 𝑃 ‘ ( 𝑘  +  1 ) ) ) | 
						
							| 21 | 19 20 | preq12d | ⊢ ( 𝑝  =  𝑃  →  { ( 𝑝 ‘ 𝑘 ) ,  ( 𝑝 ‘ ( 𝑘  +  1 ) ) }  =  { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) } ) | 
						
							| 22 | 18 21 | eqeqan12d | ⊢ ( ( 𝑓  =  𝐹  ∧  𝑝  =  𝑃 )  →  ( ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) )  =  { ( 𝑝 ‘ 𝑘 ) ,  ( 𝑝 ‘ ( 𝑘  +  1 ) ) }  ↔  ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) )  =  { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) } ) ) | 
						
							| 23 | 16 22 | raleqbidv | ⊢ ( ( 𝑓  =  𝐹  ∧  𝑝  =  𝑃 )  →  ( ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) )  =  { ( 𝑝 ‘ 𝑘 ) ,  ( 𝑝 ‘ ( 𝑘  +  1 ) ) }  ↔  ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) )  =  { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) } ) ) | 
						
							| 24 | 9 14 23 | 3anbi123d | ⊢ ( ( 𝑓  =  𝐹  ∧  𝑝  =  𝑃 )  →  ( ( 𝑓  ∈  Word  dom  𝐼  ∧  𝑝 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉  ∧  ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) )  =  { ( 𝑝 ‘ 𝑘 ) ,  ( 𝑝 ‘ ( 𝑘  +  1 ) ) } )  ↔  ( 𝐹  ∈  Word  dom  𝐼  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉  ∧  ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) )  =  { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) } ) ) ) | 
						
							| 25 | 24 | opelopabga | ⊢ ( ( 𝐹  ∈  𝑈  ∧  𝑃  ∈  𝑍 )  →  ( 〈 𝐹 ,  𝑃 〉  ∈  { 〈 𝑓 ,  𝑝 〉  ∣  ( 𝑓  ∈  Word  dom  𝐼  ∧  𝑝 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉  ∧  ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) )  =  { ( 𝑝 ‘ 𝑘 ) ,  ( 𝑝 ‘ ( 𝑘  +  1 ) ) } ) }  ↔  ( 𝐹  ∈  Word  dom  𝐼  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉  ∧  ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) )  =  { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) } ) ) ) | 
						
							| 26 | 25 | 3adant1 | ⊢ ( ( 𝐺  ∈  𝑊  ∧  𝐹  ∈  𝑈  ∧  𝑃  ∈  𝑍 )  →  ( 〈 𝐹 ,  𝑃 〉  ∈  { 〈 𝑓 ,  𝑝 〉  ∣  ( 𝑓  ∈  Word  dom  𝐼  ∧  𝑝 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉  ∧  ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) )  =  { ( 𝑝 ‘ 𝑘 ) ,  ( 𝑝 ‘ ( 𝑘  +  1 ) ) } ) }  ↔  ( 𝐹  ∈  Word  dom  𝐼  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉  ∧  ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) )  =  { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) } ) ) ) | 
						
							| 27 | 7 26 | bitrd | ⊢ ( ( 𝐺  ∈  𝑊  ∧  𝐹  ∈  𝑈  ∧  𝑃  ∈  𝑍 )  →  ( 𝐹 ( UPWalks ‘ 𝐺 ) 𝑃  ↔  ( 𝐹  ∈  Word  dom  𝐼  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉  ∧  ∀ 𝑘  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) )  =  { ( 𝑃 ‘ 𝑘 ) ,  ( 𝑃 ‘ ( 𝑘  +  1 ) ) } ) ) ) |