Step |
Hyp |
Ref |
Expression |
1 |
|
upwlksfval.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
upwlksfval.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
3 |
1 2
|
upwlksfval |
⊢ ( 𝐺 ∈ V → ( UPWalks ‘ 𝐺 ) = { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ∈ Word dom 𝐼 ∧ 𝑝 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) = { ( 𝑝 ‘ 𝑘 ) , ( 𝑝 ‘ ( 𝑘 + 1 ) ) } ) } ) |
4 |
3
|
brfvopab |
⊢ ( 𝐹 ( UPWalks ‘ 𝐺 ) 𝑃 → ( 𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) |
5 |
4
|
a1i |
⊢ ( 𝐺 ∈ 𝑊 → ( 𝐹 ( UPWalks ‘ 𝐺 ) 𝑃 → ( 𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ) |
6 |
|
elex |
⊢ ( 𝐺 ∈ 𝑊 → 𝐺 ∈ V ) |
7 |
|
elex |
⊢ ( 𝐹 ∈ Word dom 𝐼 → 𝐹 ∈ V ) |
8 |
|
ovex |
⊢ ( 0 ... ( ♯ ‘ 𝐹 ) ) ∈ V |
9 |
1
|
fvexi |
⊢ 𝑉 ∈ V |
10 |
8 9
|
fpm |
⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 → 𝑃 ∈ ( 𝑉 ↑pm ( 0 ... ( ♯ ‘ 𝐹 ) ) ) ) |
11 |
10
|
elexd |
⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 → 𝑃 ∈ V ) |
12 |
7 11
|
anim12i |
⊢ ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) → ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) |
13 |
12
|
3adant3 |
⊢ ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) → ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) |
14 |
6 13
|
anim12i |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) ) → ( 𝐺 ∈ V ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ) |
15 |
14
|
ex |
⊢ ( 𝐺 ∈ 𝑊 → ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) → ( 𝐺 ∈ V ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ) ) |
16 |
|
3anass |
⊢ ( ( 𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V ) ↔ ( 𝐺 ∈ V ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ) |
17 |
15 16
|
syl6ibr |
⊢ ( 𝐺 ∈ 𝑊 → ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) → ( 𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ) |
18 |
1 2
|
isupwlk |
⊢ ( ( 𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V ) → ( 𝐹 ( UPWalks ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) ) ) |
19 |
18
|
a1i |
⊢ ( 𝐺 ∈ 𝑊 → ( ( 𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V ) → ( 𝐹 ( UPWalks ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) ) ) ) |
20 |
5 17 19
|
pm5.21ndd |
⊢ ( 𝐺 ∈ 𝑊 → ( 𝐹 ( UPWalks ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ) ) ) |